logo logo


Modeling of crack opening mode sif for a crack in a thin-walled structural channel beam

НазваModeling of crack opening mode sif for a crack in a thin-walled structural channel beam
Назва англійськоюModeling of crack opening mode sif for a crack in a thin-walled structural channel beam
АвториMykola Pidgurskyi, Mykola Stashkiv, Ivan Pidgurskyi
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описModeling of crack opening mode sif for a crack in a thin-walled structural channel beam / Mykola Pidgurskyi, Mykola Stashkiv, Ivan Pidgurskyi // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 102. — No 2. — P. 78–86.
Bibliographic description:Pidgurskyi M., Stashkiv M., Pidgurskyi I. (2021) Modeling of crack opening mode sif for a crack in a thin-walled structural channel beam. Scientific Journal of TNTU (Tern.), vol 102, no 2, pp. 78–86.
DOI: https://doi.org/10.33108/visnyk_tntu2021.02.078
УДК

621.791.052

Ключові слова

stress intensity factor, edge crack, structural channel, finite element method.

The analysis of engineering methods for determining stress intensity factors (SIF) for defective elements of open profile (channels) under bending is carried out. Mathematical models are created and dependences for calculation of SIF are deduced using two methods: using nominal stresses in net-section and using change of the inertia-moment of the profile cross-section. The obtained results are compared with the data of SIF for the crack in the channel obtained during simulation modeling using finite element method.

 

ISSN:2522-4433
Перелік літератури
  1. Hobbacher A. F. Recommendations for Fatigue Design of Welded Joints and Components Springer 2nd ed. 2016, XVI, 143 p.
  2. Vinokurov V. A., Kurkin S. A., Nikolaev G. A. Welded structures. Fracture mechanics and performance criteria. M.: Mechanical Engineering, 1996. 576 p. [In Russian].
  3. Andrejkiv A. E., Darchuk A. I. Ustalostnoe razrushenie i dolgovechnost konstrukcij. K.: Nauk. dumka, 1992. 184 p. [In Russian].
  4. Bertolini P., Eder M. A., Taglialegne L., Valvo P. S., Stresses in constant tapered beams with thin-walled rectangular and circular cross sections. Thin-Walled Structures. Vol. 137. 2019. P. 527–540, ISSN 0263-8231, https://doi.org/10.1016/j.tws.2019.01.008.
  5. Franco E. Dotti, Víctor H. Cortínez, Florencia Reguera, Mode I stress intensity factor for cracked thin-walled composite beams. Theoretical and Applied Fracture Mechanics. Vol. 67–68. 2013. P. 38–45.
    ISSN 0167-8442
  6. Longgang Tian, Leiting Dong, Sharada Bhavanam, Nam Phan, Satya N. Atluri, Mixed-mode
    fracture & non-planar fatigue analyses of cracked I-beams, using a 3D SGBEM–FEM Alternating Method. Theoretical and Applied Fracture Mechanics. Vol. 74. 2014. P. 188–199, ISSN 0167-8442. https://doi.org/10.1016/j.tafmec.2014.10.002.
  7. Pawar, Pravin & Ballav, Raj & Kumar, Amaresh. (2016). Finite element method analysis of stress intensity factor in i channel section. Journal of Production Engineering. 19. Р. 103–107.
  8. Álvarez, Morán & Seitl, Stanislav & Miarka, Petr. (2020). Numerical study of universal beam (i section) under bending load with crack. 54–57. DOI: 10.21495/5896-3-054.
  9. Prokopenko A. V. Eksperimentalnoe opredelenie koefficientov intensivnosti napryazhenij dlya treshin s krivolinejnym frontom v slozhnyh detalyah (lopatkah GTD). Problemy prochnosti. 1981. No. 4. 105–111 p. [In Russian].
  10. Andrejkiv A. E. Prostranstvennye zadachi teorii treshin. K.: Nauk. dumka, 1982. 348 p. [In Russian].
  11. Parton V. Z., Morozov E. M. Mehanika uprugoplasticheskogo razrusheniya. M.: Nauka, 1985. 504 p. [In Russian].
  12. Kienzler R., Hermann G. An Elementary Theory of Defective Beams. Acta Mecanica. 1986. Vol. 62.
    P. 37–46.
  13. Pidhurskyi M., Stashkiv M.. Metody vyznachennia KIN dlia defektnykh elementiv vidkrytoho profiliu. Visnyk TDTU. 2006. Vol. 11. No. 2. Р. 92–108 pp. [In Ukrainian].
  14. ANSYS Workbench User's Guide. Release 2020 R1. © ANSYS, Inc. 396 p.
  15. Meinhard Kuna Finite Elements in Fracture Mechanics. Theory – Numerics – Applications. – Springer Netherlands, 2013. 447 p.
References:
  1. Hobbacher A. F. Recommendations for Fatigue Design of Welded Joints and Components Springer 2nd ed. 2016, XVI, 143 p.
  2. Vinokurov V. A., Kurkin S. A., Nikolaev G. A. Welded structures. Fracture mechanics and performance criteria. M.: Mechanical Engineering, 1996. 576 p. [In Russian].
  3. Andrejkiv A. E., Darchuk A. I. Ustalostnoe razrushenie i dolgovechnost konstrukcij. K.: Nauk. dumka, 1992. 184 p. [In Russian].
  4. Bertolini P., Eder M. A., Taglialegne L., Valvo P. S., Stresses in constant tapered beams with thin-walled rectangular and circular cross sections. Thin-Walled Structures. Vol. 137. 2019. P. 527–540, ISSN 0263-8231, https://doi.org/10.1016/j.tws.2019.01.008.
  5. Franco E. Dotti, Víctor H. Cortínez, Florencia Reguera, Mode I stress intensity factor for cracked thin-walled composite beams. Theoretical and Applied Fracture Mechanics. Vol. 67–68. 2013. P. 38–45.
    ISSN 0167-8442
  6. Longgang Tian, Leiting Dong, Sharada Bhavanam, Nam Phan, Satya N. Atluri, Mixed-mode
    fracture & non-planar fatigue analyses of cracked I-beams, using a 3D SGBEM–FEM Alternating Method. Theoretical and Applied Fracture Mechanics. Vol. 74. 2014. P. 188–199, ISSN 0167-8442. https://doi.org/10.1016/j.tafmec.2014.10.002.
  7. Pawar, Pravin & Ballav, Raj & Kumar, Amaresh. (2016). Finite element method analysis of stress intensity factor in i channel section. Journal of Production Engineering. 19. Р. 103–107.
  8. Álvarez, Morán & Seitl, Stanislav & Miarka, Petr. (2020). Numerical study of universal beam (i section) under bending load with crack. 54–57. DOI: 10.21495/5896-3-054.
  9. Prokopenko A. V. Eksperimentalnoe opredelenie koefficientov intensivnosti napryazhenij dlya treshin s krivolinejnym frontom v slozhnyh detalyah (lopatkah GTD). Problemy prochnosti. 1981. No. 4. 105–111 p. [In Russian].
  10. Andrejkiv A. E. Prostranstvennye zadachi teorii treshin. K.: Nauk. dumka, 1982. 348 p. [In Russian].
  11. Parton V. Z., Morozov E. M. Mehanika uprugoplasticheskogo razrusheniya. M.: Nauka, 1985. 504 p. [In Russian].
  12. Kienzler R., Hermann G. An Elementary Theory of Defective Beams. Acta Mecanica. 1986. Vol. 62.
    P. 37–46.
  13. Pidhurskyi M., Stashkiv M.. Metody vyznachennia KIN dlia defektnykh elementiv vidkrytoho profiliu. Visnyk TDTU. 2006. Vol. 11. No. 2. Р. 92–108 pp. [In Ukrainian].
  14. ANSYS Workbench User's Guide. Release 2020 R1. © ANSYS, Inc. 396 p.
  15. Meinhard Kuna Finite Elements in Fracture Mechanics. Theory – Numerics – Applications. – Springer Netherlands, 2013. 447 p.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.