logo logo


Numerical simulation of dynamic shear tests for high-strength steels specimens

НазваNumerical simulation of dynamic shear tests for high-strength steels specimens
Назва англійськоюNumerical simulation of dynamic shear tests for high-strength steels specimens
АвториIevhen Kondriakov, Valeriy Kharchenko
ПринадлежністьG. S. Pisarenko Institute for Problems of Strength of the NAS of Ukraine, Kyiv, Ukraine
Бібліографічний описNumerical simulation of dynamic shear tests for high-strength steels specimens / Ievhen Kondriakov, Valeriy Kharchenko // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 102. — No 2. — P. 110–120.
Bibliographic description:Kondriakov I., Kharchenko V. (2021) Numerical simulation of dynamic shear tests for high-strength steels specimens. Scientific Journal of TNTU (Tern.), vol 102, no 2, pp. 110–120.
УДК

539.4

Ключові слова

dynamic shear, strain rate, finite element method, high-strength steels.

A series of numerical calculations using the finite element method was carried out to develop a dynamic shear testing method for high-strength steels specimens. The shape of the specimens with two shear zones was chosen for investigations. Obtained results made it possible to choose the optimal specimen size and loading scheme for realizing pure shear conditions. Using the Johnson-Cook model, taking into account the effect of the strain rate, the fracture of the specimens of armored steel Armox 500T was simulated using the appropriate fracture criterion. Obtained results showed that such a specimen design and loading scheme should ensure the implementation of pure shear conditions.

ISSN:2522-4433
Перелік літератури
  1. Meyer L.W., Kruger L. Drop-weight compression shear testing. ASM handbook, mechanical testing and evaluation. 2000. Vol. 8. P. 452–454.
  2. Wright T. W. The Physics and Mathematics of Shear Bands. Cambridge Monographs on Mechanics. Cambridge University Press. 2002. 260 p.
  3. Klepaczko J. R. An experimental technique for shear testing at high and very high strain rates. The case of a mild steel. International Journal of Impact Engineering. 1994. Vol. 15. No. 1. P. 25–39.
  4. Pursche F., Meyer L. W. Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels. Engineering Transactions. 2011. Vol. 59. No. 2. P. 67–84.
  5. Xu Z., Ding X., Zhang W., Huang F. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique. Int. J. Impact Eng. 2017. Vol. 101. P. 90–104.
  6. Clos R., Schreppel U., Veit P. Temperature, microstructure and mechanical response during shear-band formation in different metallic materials. Journal de Physique. 2003. Vol. 110. No. 4. P. 111–116.
  7. Wei Z., Li Y., Li J., Hu S. Formation mechanism of adiabatic shear band in Tungsten heavy alloys. Acta metallurgica sinica. 2000. Vol. 36. No. 12. P. 1263–1268. [In Chinese].
  8. Kalthoff J. F. Modes of dynamic shear failure in solids. International Journal of Fracture. 2000. Vol. 101.
    P. 1–31.
  9. Dorogoy A., Rittel D., Godinger A. A shear-tension specimen for large strain testing. Experimental Mechanics. 2015. Vol. 56. No. 3. P. 437–449.
  10. Meyer L. W., Staskewitsch E., Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading. Mechanics of Materials. 1994. Vol. 17. No. 2–3. P. 203–214.
  11. Yu J., Li J, Wei Z. Researches on adiabatic shear failure of tungsten heavy alloy and Ti6Al4V alloy.
    J. Ningbo Univ. 2003. Vol. 16. No. 4. P. 417–428.
  12. Dowling A. R., Harding J., Campbell J. D. The dynamic punching of metals. Journal of Institute of Metals. 1970. Vol. 98. P. 215–224.
  13. Meyer L. W., Andrade U. R., Chokshi A. H. The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metallurgical and Materials Transactions A. 1995. Vol. 26. P. 2881–2893.
  14. Dodd B., Bai Y. Adiabatic shear localization: frontiers and advances. Elsevier, London. 2012. 468 p.
  15. Meyer L. W., Halle T. Shear strength and shear failure, overview of testing and behavior of ductile metals. Mech. Time-Depend Mater. 2011. Vol. 15. P. 327–340.
  16. Rittel D., Lee S., Ravichandran G. A Shear-compression specimen for large strain testing. Exp. Mech. 2002. Vol. 42. P. 58–64.
  17. Ferguson W. G., Hauser F. E., Dorn J. E. Dislocation damping in zinc single crystals. Brit. J. Appl. Phys. 1967. Vol. 18. P. 411–417.
  18. Stepanov G. V. Uprugoplasticheskoe deformirovanie i razrushenie materialov pri impul`snom nagruzhenii. Kiev: Nauk. dumka, 1991. 288 p. [In Russian].
  19. Stepanov G. V., Fedorchuk V. A. Lokalizovanny`j sdvig v metallakh pri udarnom nagruzhenii. Problemy` prochnosti. 2000. No. 2. P. 27–42. [In Russian].
  20. Xu Z., Ding X., Zhang W., Huang F. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique. Int. J. Impact Eng. 2017. Vol. 101. P. 90–104.
  21. Peirs J. et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V. International Journal of Impact Engineering. 2010. Vol. 37. P. 703–714.
  22. Xu Z. et al. Plastic behavior and failure mechanism of Ti-6Al-4V under quasi-static and dynamic shear loading. International Journal of Impact Engineering. 2019. Vol. 130. P. 281–291.
  23. Johnson G. R, Cook W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fracture Mech. 1985. Vol. 21. P. 31–48.
  24. Hancock J. W., Mackenzie A. C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids. 1976. Vol. 24. P. 147–169.
  25. Iqbal M. A., Senthil K., Sharma P., Gupta N. K. An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering. 2016. Vol. 96. P. 146–164.
References:
  1. Meyer L.W., Kruger L. Drop-weight compression shear testing. ASM handbook, mechanical testing and evaluation. 2000. Vol. 8. P. 452–454.
  2. Wright T. W. The Physics and Mathematics of Shear Bands. Cambridge Monographs on Mechanics. Cambridge University Press. 2002. 260 p.
  3. Klepaczko J. R. An experimental technique for shear testing at high and very high strain rates. The case of a mild steel. International Journal of Impact Engineering. 1994. Vol. 15. No. 1. P. 25–39.
  4. Pursche F., Meyer L. W. Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels. Engineering Transactions. 2011. Vol. 59. No. 2. P. 67–84.
  5. Xu Z., Ding X., Zhang W., Huang F. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique. Int. J. Impact Eng. 2017. Vol. 101. P. 90–104.
  6. Clos R., Schreppel U., Veit P. Temperature, microstructure and mechanical response during shear-band formation in different metallic materials. Journal de Physique. 2003. Vol. 110. No. 4. P. 111–116.
  7. Wei Z., Li Y., Li J., Hu S. Formation mechanism of adiabatic shear band in Tungsten heavy alloys. Acta metallurgica sinica. 2000. Vol. 36. No. 12. P. 1263–1268. [In Chinese].
  8. Kalthoff J. F. Modes of dynamic shear failure in solids. International Journal of Fracture. 2000. Vol. 101.
    P. 1–31.
  9. Dorogoy A., Rittel D., Godinger A. A shear-tension specimen for large strain testing. Experimental Mechanics. 2015. Vol. 56. No. 3. P. 437–449.
  10. Meyer L. W., Staskewitsch E., Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading. Mechanics of Materials. 1994. Vol. 17. No. 2–3. P. 203–214.
  11. Yu J., Li J, Wei Z. Researches on adiabatic shear failure of tungsten heavy alloy and Ti6Al4V alloy.
    J. Ningbo Univ. 2003. Vol. 16. No. 4. P. 417–428.
  12. Dowling A. R., Harding J., Campbell J. D. The dynamic punching of metals. Journal of Institute of Metals. 1970. Vol. 98. P. 215–224.
  13. Meyer L. W., Andrade U. R., Chokshi A. H. The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metallurgical and Materials Transactions A. 1995. Vol. 26. P. 2881–2893.
  14. Dodd B., Bai Y. Adiabatic shear localization: frontiers and advances. Elsevier, London. 2012. 468 p.
  15. Meyer L. W., Halle T. Shear strength and shear failure, overview of testing and behavior of ductile metals. Mech. Time-Depend Mater. 2011. Vol. 15. P. 327–340.
  16. Rittel D., Lee S., Ravichandran G. A Shear-compression specimen for large strain testing. Exp. Mech. 2002. Vol. 42. P. 58–64.
  17. Ferguson W. G., Hauser F. E., Dorn J. E. Dislocation damping in zinc single crystals. Brit. J. Appl. Phys. 1967. Vol. 18. P. 411–417.
  18. Stepanov G. V. Uprugoplasticheskoe deformirovanie i razrushenie materialov pri impul`snom nagruzhenii. Kiev: Nauk. dumka, 1991. 288 p. [In Russian].
  19. Stepanov G. V., Fedorchuk V. A. Lokalizovanny`j sdvig v metallakh pri udarnom nagruzhenii. Problemy` prochnosti. 2000. No. 2. P. 27–42. [In Russian].
  20. Xu Z., Ding X., Zhang W., Huang F. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique. Int. J. Impact Eng. 2017. Vol. 101. P. 90–104.
  21. Peirs J. et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V. International Journal of Impact Engineering. 2010. Vol. 37. P. 703–714.
  22. Xu Z. et al. Plastic behavior and failure mechanism of Ti-6Al-4V under quasi-static and dynamic shear loading. International Journal of Impact Engineering. 2019. Vol. 130. P. 281–291.
  23. Johnson G. R, Cook W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fracture Mech. 1985. Vol. 21. P. 31–48.
  24. Hancock J. W., Mackenzie A. C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids. 1976. Vol. 24. P. 147–169.
  25. Iqbal M. A., Senthil K., Sharma P., Gupta N. K. An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering. 2016. Vol. 96. P. 146–164.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.