logo logo


Thermomechanical analysis of nitinol memory alloy behavior

НазваThermomechanical analysis of nitinol memory alloy behavior
Назва англійськоюThermomechanical analysis of nitinol memory alloy behavior
АвториNazarii Bykiv, Volodymyr Iasnii, Petro Yasniy, Robert Junga
ПринадлежністьTernopil Ivan Puluy National Technical University, Ternopil, Ukraine Opole University of Technology, Opole, Poland
Бібліографічний описThermomechanical analysis of nitinol memory alloy behavior / Nazarii Bykiv, Volodymyr Iasnii, Petro Yasniy, Robert Junga // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 102. — No 2. — P. 161-167.
Bibliographic description:Bykiv N., Iasnii V., Yasniy P., Junga R. (2021) Thermomechanical analysis of nitinol memory alloy behavior. Scientific Journal of TNTU (Tern.), vol 102, no 2, pp. 161–167.
DOI: https://doi.org/10.33108/visnyk_tntu2021.02.161
УДК

539.3

Ключові слова

shape memory alloys, stress-strain curve, temperature of phases transformation.

Shape memory alloys are functional materials characterized by the effect of shape memory and superelasticity. Due to these properties, they are widely used, particularly, in bioengineering, aeronautics, robotics and civil engineering. The temperatures of phase transformations and the influence of external temperature and strain rate on the functional and mechanical characteristics of Ni55.75Ti44.15 shape memory alloy are investigated in this paper. The temperature of alloy phase transformations is obtained by differential scanning calorimetry (DSC) in the temperature range from -70°C to 70°C. Diagrams of differential scanning calorimeters at different heating and cooling rates of Ni55.75Ti44.15 alloy is constructed and analyzed. Samples for mechanical tests are made of round rod 8 mm in diameter. The samples working area is 12.5 mm in length and 4 mm in diameter. Mechanical tests are carried out at temperatures close to the maximum value of the completion temperature of martensitic-austenitic transformation Af = 14.7°C. Diagrams of deformation under uniaxial tension are constructed and stresses of phase transformations, Young's modulus and relative elongations of transformation areas at different loading speeds and exterior temperatures are determined. Using Clausius-Clapeyron formula, it is shown that with simultaneous changes in temperature and strain rate, the stresses of phase transformations are largely due to changes in temperature rather than load rates. The coefficients of Clausius-Clapeyron equation for superelastic Ni55.75Ti44.15 alloy with shape memory, which are consistent with those known in the literature, are determined.

ISSN:2522-4433
Перелік літератури

1.     Morgan N. B. Medical shape memory alloy applications – The market and its products. Mater. Sci. Eng. A. 2004. Vol. 378. No. 1–2 SPEC. ISS. P. 16–23.
2.     Nematollahi M. et al. Application of NiTi in Assistive and Rehabilitation Devices: A Review. Bioengineering. Multidisciplinary Digital Publishing Institute, 2019. Vol. 6. No. 2. P. 37.
3.     Mohd Jani J. et al. A review of shape memory alloy research, applications and opportunities. Mater. Des. Elsevier Ltd, 2014. Vol. 56. P. 1078–1113.
4.     Pecora R., Dimino I. SMA for Aeronautics. Shape Mem. Alloy Eng. Butterworth-Heinemann, 2015. P. 275–304.
5.     Zeng Z. et al. Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy. Opt. Laser Technol. Elsevier. 2020. Vol. 122. P. 105876.
6.     Isalgue A. et al. SMA for Dampers in Civil Engineering. Mater. Trans. 2006. Vol. 47. No. 3. P. 682–690.
7.     Morais J. et al. Shape Memory Alloy Based Dampers for Earthquake Response Mitigation. Procedia Struct. Integr. Elsevier, 2017. Vol. 5. P. 705–712.
8.     Dolce M. et al. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthq. Eng. Struct. Dyn. 2005. Vol. 34. No. 14. P. 1687–1717.
9.     Dayananda G. N., Rao M. S. Effect of strain rate on properties of superelastic NiTi thin wires. Mater. Sci. Eng. A. 2008. Vol. 486. No. 1–2. P. 96–103.
10. Entemeyer D. et al. 2000_Strain rate sensitivity in superelasticity_Entemeyer. Int. J. Plast. Elsevier, 2000. Vol. 16. P. 273–274.
11. Rodrigues M. C. M. et al. INFLUENCE OF STRAIN RATE ON THE FUNCTIONAL BEHAVIOR OF A NITI ALLOY UNDER PSEUDOELASTIC TRAINING // 71th ABM Annual Congress, Rio de Janeiro, 2016. Editora Edgard Blucher, Ltda., 2016. P. 118–127.
12. Iasnii V., Junga R. Fazovi peretvorennia ta mekhanichni vlastyvosti splavu nitynol zpam’iattiu formy. Fizyko-khimichna mekhanika materialiv. 2018. Vol. 54. No. 3. P. 107–111. [In Ukraine].
13. ASTM F2516-14. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. Book of Standards Volume: 13.02. 2014.
14. Wang Z. G., Zu X. T., Huo Y. Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochim. Acta. 2005. Vol. 436. No. 1–2. P. 153–155.
15. Çakmak U. D., Major Z., Fischlschweiger M. Mechanical consequences of dynamically loaded niti wires under typical actuator conditions in rehabilitation and neuroscience. J. Funct. Biomater. 2021. Vol. 12. No. 1. P. 11–17.
16. Kök M. et al. The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing. J. Phys. Conf. Ser. 2016. Vol. 667. No. 1.

References:

1.     Morgan N. B. Medical shape memory alloy applications – The market and its products. Mater. Sci. Eng. A. 2004. Vol. 378. No. 1–2 SPEC. ISS. P. 16–23.
2.     Nematollahi M. et al. Application of NiTi in Assistive and Rehabilitation Devices: A Review. Bioengineering. Multidisciplinary Digital Publishing Institute, 2019. Vol. 6. No. 2. P. 37.
3.     Mohd Jani J. et al. A review of shape memory alloy research, applications and opportunities. Mater. Des. Elsevier Ltd, 2014. Vol. 56. P. 1078–1113.
4.     Pecora R., Dimino I. SMA for Aeronautics. Shape Mem. Alloy Eng. Butterworth-Heinemann, 2015. P. 275–304.
5.     Zeng Z. et al. Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy. Opt. Laser Technol. Elsevier. 2020. Vol. 122. P. 105876.
6.     Isalgue A. et al. SMA for Dampers in Civil Engineering. Mater. Trans. 2006. Vol. 47. No. 3. P. 682–690.
7.     Morais J. et al. Shape Memory Alloy Based Dampers for Earthquake Response Mitigation. Procedia Struct. Integr. Elsevier, 2017. Vol. 5. P. 705–712.
8.     Dolce M. et al. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthq. Eng. Struct. Dyn. 2005. Vol. 34. No. 14. P. 1687–1717.
9.     Dayananda G. N., Rao M. S. Effect of strain rate on properties of superelastic NiTi thin wires. Mater. Sci. Eng. A. 2008. Vol. 486. No. 1–2. P. 96–103.
10. Entemeyer D. et al. 2000_Strain rate sensitivity in superelasticity_Entemeyer. Int. J. Plast. Elsevier, 2000. Vol. 16. P. 273–274.
11. Rodrigues M. C. M. et al. INFLUENCE OF STRAIN RATE ON THE FUNCTIONAL BEHAVIOR OF A NITI ALLOY UNDER PSEUDOELASTIC TRAINING // 71th ABM Annual Congress, Rio de Janeiro, 2016. Editora Edgard Blucher, Ltda., 2016. P. 118–127.
12. Iasnii V., Junga R. Fazovi peretvorennia ta mekhanichni vlastyvosti splavu nitynol zpam’iattiu formy. Fizyko-khimichna mekhanika materialiv. 2018. Vol. 54. No. 3. P. 107–111. [In Ukraine].
13. ASTM F2516-14. Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. Book of Standards Volume: 13.02. 2014.
14. Wang Z. G., Zu X. T., Huo Y. Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochim. Acta. 2005. Vol. 436. No. 1–2. P. 153–155.
15. Çakmak U. D., Major Z., Fischlschweiger M. Mechanical consequences of dynamically loaded niti wires under typical actuator conditions in rehabilitation and neuroscience. J. Funct. Biomater. 2021. Vol. 12. No. 1. P. 11–17.
16. Kök M. et al. The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing. J. Phys. Conf. Ser. 2016. Vol. 667. No. 1.

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.