logo logo


Simulation of boring by smoothed particle hydrodynamics method

НазваSimulation of boring by smoothed particle hydrodynamics method
Назва англійськоюSimulation of boring by smoothed particle hydrodynamics method
АвториMaksym Shykhalieiev
ПринадлежністьNational Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
Бібліографічний описSimulation of boring by smoothed particle hydrodynamics method / Maksym Shykhalieiev // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 103. — No 3. — P. 13–22.
Bibliographic description:Shykhalieiev M. (2021) Simulation of boring by smoothed particle hydrodynamics method. Scientific Journal of TNTU (Tern.), vol 103, no 3, pp. 13–22.
УДК

621.7

Ключові слова

boring, cutting dynamics, smoothed particle hydrodynamics method, mesh-free modeling method, FEM, SPH, machining modeling.

The possibility of applying the smoothed particle hydrodynamics method for modeling of cutting processes on the example of multi-blade boring of holes is considered in this paper. Highly nonlinear LS-Dyna solver with an explicit statement of the dynamic modeling problem is used as a software package for modeling. Johnson-Cook formulation with the corresponding empirical coefficients for each material is used as the model of the workpiece material. Absolutely solid tool is used to simplify the model. The kinematic scheme of the tool rotation is implemented using the keyword INITIAL_VELOCITY_GENERATION. The simulation results obtained in the software package are presented in the form of graphs.

ISSN:2522-4433
Перелік літератури
  1. Eckart Uhlmann, Enrico Barth. Smoothed Particle Hydrodynamics simulation of the machining process of Inconel 718.
  2. Fabian Spreng, Peter Eberhard. Machining Process Simulations with Smoothed Particle Hydrodynamics
  3. Madaj M, Piska M. On the SPH Orthogonal Cutting Simulation of A2024-T351 Alloy. Procedia CIRP 2013;8:152-157.
  4. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting.
  5. The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel.
  6. Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy.
  7. Uhlmann E, v. d. Schulenburg MG, Zettier R. Finite Element Modeling and Cutting Simulation of Inconel 718. CIRP Annals 2007;56:61-64.
  8. P. W. Cleary, M. Prakash, R. Das, J. Ha. Modelling of Metal Forging Using SPH. Applied Mathematical Modeling. 2012. Vol. 36. Issue 8. P. 3836–3855. DOI: 10.1016/j.apm.2011.11.019.
  9. Balbaa M. A., Nasr Mohamed NA. Prediction of Residual Stresses after Laser-assisted Machining of Inconel 718 Using SPH. In: Schulze V, editor. Proceedings of the 15th CIRP Conference on Modelling of Machining Operations. Vol. 31. Amsterdam: Elsevier B. V.; 2015. P. 19–23.
  10. Heisel U., Zaloga W., Krivoruchko D., Storchak M., Goloborodko L. Modelling of orthogonal cutting processes with the method of smoothed particle hydrodynamics. Production Engineering 2013;7(6):639‑645.
  11. Feng Zhang, Zheng Liu, Yue Wang, Pingli Mao, Xinwen Kuang, Zhenglai Zhang, Yingdong Ju, Xiaozhong Xu, The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture. Journal of Magnesium and Alloys. Vol. 8. Issue 1. 2020. P. 172–183. ISSN 2213-9567. URL: https://doi.org/10.1016/j.jma.2019.05.013.
  12. Spreng F., Schnabel D., Mueller A., Eberhard P., 2014. A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics, Computational Particle Mechanics, 1(2):131-145.
  13. Xi Y, Bermingham M, Wang G, Dargusch M. SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Computational Materials Science 2014;84:188‑197.
  14. Livermore Software Technology Corporation (LSTC), 2012, LSDYNA: Keyword User’s Manual – Volume II: Material Models, California.
  15. Gaugele T., Eberhard P., 2013. Simulation of cutting processes using meshfree Lagrangian particle methods, Computational Mechanics, 51(3):261-278.
  16. H. Li and E. Du, “Simulation of rock fragmentation induced by a tunnel boring machine disk cutter”, Advances in Mechanical Engineering. Vol. 8. No. 6. P. 1–11. 2016. URL: https://doi.org/10.1177/ 1687814016651557 [Accessed 21 December 2020].
  17. D. Parle, R. Singh and S. Joshi, “Modeling of Specific Cutting Energy in Micro-Cutting using SPH Simulation”, IWMF2014,9thINTERNATIONAL WORKSHOP ON MICROFACTORIES. P. 121–126. 2014. [Accessed 21 December 2020].
  18. N. Chandiramani and T. Pothala, “Dynamics of 2-dof regenerative chatter during turning”. Journal of Sound and Vibration. Vol. 290. No. 1–2. P. 448–464. 2006. URL: https://doi.org/10.1016/j.jsv.2005.04.012 [Accessed 24 December 2020].
References:
  1. Eckart Uhlmann, Enrico Barth. Smoothed Particle Hydrodynamics simulation of the machining process of Inconel 718.
  2. Fabian Spreng, Peter Eberhard. Machining Process Simulations with Smoothed Particle Hydrodynamics
  3. Madaj M, Piska M. On the SPH Orthogonal Cutting Simulation of A2024-T351 Alloy. Procedia CIRP 2013;8:152-157.
  4. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting.
  5. The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel.
  6. Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy.
  7. Uhlmann E, v. d. Schulenburg MG, Zettier R. Finite Element Modeling and Cutting Simulation of Inconel 718. CIRP Annals 2007;56:61-64.
  8. P. W. Cleary, M. Prakash, R. Das, J. Ha. Modelling of Metal Forging Using SPH. Applied Mathematical Modeling. 2012. Vol. 36. Issue 8. P. 3836–3855. DOI: 10.1016/j.apm.2011.11.019.
  9. Balbaa M. A., Nasr Mohamed NA. Prediction of Residual Stresses after Laser-assisted Machining of Inconel 718 Using SPH. In: Schulze V, editor. Proceedings of the 15th CIRP Conference on Modelling of Machining Operations. Vol. 31. Amsterdam: Elsevier B. V.; 2015. P. 19–23.
  10. Heisel U., Zaloga W., Krivoruchko D., Storchak M., Goloborodko L. Modelling of orthogonal cutting processes with the method of smoothed particle hydrodynamics. Production Engineering 2013;7(6):639‑645.
  11. Feng Zhang, Zheng Liu, Yue Wang, Pingli Mao, Xinwen Kuang, Zhenglai Zhang, Yingdong Ju, Xiaozhong Xu, The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture. Journal of Magnesium and Alloys. Vol. 8. Issue 1. 2020. P. 172–183. ISSN 2213-9567. URL: https://doi.org/10.1016/j.jma.2019.05.013.
  12. Spreng F., Schnabel D., Mueller A., Eberhard P., 2014. A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics, Computational Particle Mechanics, 1(2):131-145.
  13. Xi Y, Bermingham M, Wang G, Dargusch M. SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Computational Materials Science 2014;84:188‑197.
  14. Livermore Software Technology Corporation (LSTC), 2012, LSDYNA: Keyword User’s Manual – Volume II: Material Models, California.
  15. Gaugele T., Eberhard P., 2013. Simulation of cutting processes using meshfree Lagrangian particle methods, Computational Mechanics, 51(3):261-278.
  16. H. Li and E. Du, “Simulation of rock fragmentation induced by a tunnel boring machine disk cutter”, Advances in Mechanical Engineering. Vol. 8. No. 6. P. 1–11. 2016. URL: https://doi.org/10.1177/ 1687814016651557 [Accessed 21 December 2020].
  17. D. Parle, R. Singh and S. Joshi, “Modeling of Specific Cutting Energy in Micro-Cutting using SPH Simulation”, IWMF2014,9thINTERNATIONAL WORKSHOP ON MICROFACTORIES. P. 121–126. 2014. [Accessed 21 December 2020].
  18. N. Chandiramani and T. Pothala, “Dynamics of 2-dof regenerative chatter during turning”. Journal of Sound and Vibration. Vol. 290. No. 1–2. P. 448–464. 2006. URL: https://doi.org/10.1016/j.jsv.2005.04.012 [Accessed 24 December 2020].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.