logo logo


Mathematical fundamentals of the method of identification of metal inclusions in raw materials with automatic determination of their coordinates

НазваMathematical fundamentals of the method of identification of metal inclusions in raw materials with automatic determination of their coordinates
Назва англійськоюMathematical fundamentals of the method of identification of metal inclusions in raw materials with automatic determination of their coordinates
АвториLeonid Zamikhovskyi; Ivan Levitskyi; Mykola Nykolaychuk; Yuriy Striletskyi
ПринадлежністьIvano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
Бібліографічний описMathematical fundamentals of the method of identification of metal inclusions in raw materials with automatic determination of their coordinates / Leonid Zamikhovskyi; Ivan Levitskyi; Mykola Nykolaychuk; Yuriy Striletskyi // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 103. — No 3. — P. 23–32.
Bibliographic description:Zamikhovskyi L., Levitskyi I., Nykolaychuk M., Striletskyi Yu. (2021) Mathematical fundamentals of the method of identification of metal inclusions in raw materials with automatic determination of their coordinates. Scientific Journal of TNTU (Tern.), vol 103, no 3, pp. 23–32.
УДК

681.518.5:519.7:666.3/.7

Ключові слова

metal inclusions, conveyor belt, theoretical and experimental research, mathematical model, identification method, coil system.

The article deals with the actual problem of theoretical substantiation of the method of identification (diagnosis) of metal inclusions (hereinafter referred to as metal inclusions) in bulk raw materials under the conditions of a conveyor belt. The presence of metal inclusions in the raw material transported by the conveyor belt can lead to both emergencies and deterioration in the quality of the output product. The identification method provides for diagnosing the presence of metal inclusions, determining its dimensions, type of metal and coordinates relative to the cross-section of the conveyor belt. The results of theoretical and experimental studies of the method for identifying metal inclusions based on a scanning signal and an additional excitation coil are considered. A mathematical model has been developed for determining the position of metal inclusions on a conveyor belt relative to a line perpendicular to the axis between two excitation coils, including two trajectories for determining coordinates for three excitation coils and two receiving coils.

ISSN:2522-4433
Перелік літератури
  1. Priazhnikova K., Kochura E. (2017) Modeliuvannia vplyvu dynamiky rudopostachannia na enerhospozhyvannia hirnycho-zbahachuvalnoho kombinatu z pozytsii keruvannia [Modeling of influence of ore supply dynamics on energy consumption in mining and processing enterprise in terms of control]. Scientific Journal of TNTU (Tern.). Vol. 85. No. 1. P. 80–88. [In English].
  2. Belodedenko S., Grechany A., Ibragimov M. (2017) Risk indicators and diagnostic models for sudden failures. Scientific Journal of TNTU (Tern.). Vol. 88. No 4. P. 111–118. [In English].
  3. Huang J. (2021) Development of a New Metal Detector Based on LDC1314. Advances in Intelligent Systems and Computing. Xijing University, Xi’an, Shaanxi, 710123, China. Volume 1385 AIST,
    P. 71–76.
  4. Wang, L., Ma, L., Zhong, H., Lei, Z., Han, T. Design and development of mobile metal object detection and positioning instrument (2015). Exp. Technol. Manag., 32 (5), p. 107–110.
  5. Citak H. (2020) Pulse Induction Metal Detector: A Performance Application. IEEE Transactions on Plasma Science. Balikesir Vocational High School, Balikesir University, Balikesir, 10145, Turkey. Volume 48, Issue 6, P. 2210–2223.
  6. Ege, Y., Coramik, M. A new measurement system using magnetic flux leakage method in pipeline inspection (2018). Measurement: Journal of the International Measurement Confederation. 123. P. 163–174. Cited 32 times. DOI: 10.1016/j.measurement.2018.03.064.
  7.  Svatoš, J., Vedral, J., Pospisil, T. Advanced Instrumentation for Polyharmonic Metal Detectors (2016) IEEE Transactions on Magnetics, 52 (5), art. No. 7352331. Cited 6 times. DOI: 10.1109/TMAG. 2015.2507780.
  8. Hu W. A new kind of metal detector based on chaotic oscillator (2017) IOP Conference Series: Earth and Environmental Science. Volume 100. Issue 120 December 2017. Article number 0121861st International Global on Renewable.
  9. Siddiqui O. (2021) Metal Detector Based on Lorentz Dispersion. IEEE Sensors Journal. College of Engineering, Taibah University, Madinah, 342, Saudi Arabia. Volume 21. Issue 3. P. 3784–3790.
  10. Siddiqui, O. F., Ramzan, R., Amin, M., Omar, M., Bastaki, N. Lorentz Reflect-Phase Detector for Moisture and Dielectric Sensing (2018) IEEE Sensors Journal. 18 (22), art. No. 8458134. P. 9236–9242. Cited 10 times.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361. DOI: 10.1109/JSEN.2018.2869401.
  11. Bai S., Bai Y. High Precision Algorithm of Metal Detector Based on Balance Coil (2018) ICEMS 2018 – 2018 21st International Conference on Electrical Machines and Systems, P. 684–68727 November 2018 Article number 854920321st International Conference on Electrical Machines and Systems, ICEMS 2018, Jeju, 7 October 2018 – 10 October 2018, 143160
  12. Bedenik G.a, Silveira J.a, Santos I.a, Carvalho E.a, Carvalho J.G.a, Freire R.b. Single coil metal detector and classifier based on phase measurement (2019) INSCIT 2019 – 4th International Symposium on Instrumentation Systems, Circuits and Transducers, August 2019 Article number 88683294th International Symposium on Instrumentation Systems, Circuits and Transducers, INSCIT 2019, Sao Paulo, 26 August 2019 – 30 August 2019, 152900
  13. Leonid M. Zamihovskyi, Ivan T. Levytskyi, Konrad Gromaszekb, Saule Smailovac, Ardak Akhmetovad, Azhar Sagymbekovab. Development of control system of metallic inclusions in granular materials based on the method of scanning signal. //SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100310H (28 September 2016). DOI: 10.1117/12.2249200.
  14. Trembach B., Kochan R., Trembach R. (2016) Multiplex digital correlator with high priority deployment of one of the acoustic signal receivers. Scientific Journal of TNTU (Tern.). No. 4 (84). P. 99–104. [In English].
  15. Zamikhovskyi L., Levytskyi I., Mirzoieva O., Nykolaychuk M., Development of a method for identification of metal inclusions in raw materials with automatic determination of their coordinates. The 5th International scientific and practical conference – Results of modern scientific research and development‖ (July 25–27, 2021) Barca Academy Publishing, Madrid, Spain. ISBN 978-84-15927-33-4. 2021. P. 81–89.
  16. Abramovych A., Piddubnyi V. (2017) Rationing signals from eddy current transducer for faithful comparison. Scientific Journal of TNTU (Tern.). Vol. 86. No. 2. P. 76–82. [In English].
  17. Lupenko S. A., Osukhivska H. M., Lutsyk N. S., Stadnyk N. B., Zozulia A. M., Shablii N. R. (2016) The comparative analysis of mathematical models of cyclic signals structure and processes. Scientific Journal of TNTU (Tern.). Vol. 82. No. 2. P. 115–127. [In English].
  18. Lytvynenko I. (2016) Method of the quadratic interpolation of the discrete rhythm function of the cyclical signal with a defined segment structure. Scientific Journal of TNTU (Tern.). No. 4 (84). P. 131–138. [In English].
  19. Zamikhovskiy L., Levitsky I., Nykolaychuk M. Designing a system that removes metallic inclusions from bulk raw materials on the belt conveyor. Eastern-European Journal of Enterprise Technologies. ISSN 1729-3774, 2021. No. 3/2 (111). P. 79–87.

 

References:
  1. Priazhnikova K., Kochura E. (2017) Modeliuvannia vplyvu dynamiky rudopostachannia na enerhospozhyvannia hirnycho-zbahachuvalnoho kombinatu z pozytsii keruvannia [Modeling of influence of ore supply dynamics on energy consumption in mining and processing enterprise in terms of control]. Scientific Journal of TNTU (Tern.). Vol. 85. No. 1. P. 80–88. [In English].
  2. Belodedenko S., Grechany A., Ibragimov M. (2017) Risk indicators and diagnostic models for sudden failures. Scientific Journal of TNTU (Tern.). Vol. 88. No 4. P. 111–118. [In English].
  3. Huang J. (2021) Development of a New Metal Detector Based on LDC1314. Advances in Intelligent Systems and Computing. Xijing University, Xi’an, Shaanxi, 710123, China. Volume 1385 AIST,
    P. 71–76.
  4. Wang, L., Ma, L., Zhong, H., Lei, Z., Han, T. Design and development of mobile metal object detection and positioning instrument (2015). Exp. Technol. Manag., 32 (5), p. 107–110.
  5. Citak H. (2020) Pulse Induction Metal Detector: A Performance Application. IEEE Transactions on Plasma Science. Balikesir Vocational High School, Balikesir University, Balikesir, 10145, Turkey. Volume 48, Issue 6, P. 2210–2223.
  6. Ege, Y., Coramik, M. A new measurement system using magnetic flux leakage method in pipeline inspection (2018). Measurement: Journal of the International Measurement Confederation. 123. P. 163–174. Cited 32 times. DOI: 10.1016/j.measurement.2018.03.064.
  7.  Svatoš, J., Vedral, J., Pospisil, T. Advanced Instrumentation for Polyharmonic Metal Detectors (2016) IEEE Transactions on Magnetics, 52 (5), art. No. 7352331. Cited 6 times. DOI: 10.1109/TMAG. 2015.2507780.
  8. Hu W. A new kind of metal detector based on chaotic oscillator (2017) IOP Conference Series: Earth and Environmental Science. Volume 100. Issue 120 December 2017. Article number 0121861st International Global on Renewable.
  9. Siddiqui O. (2021) Metal Detector Based on Lorentz Dispersion. IEEE Sensors Journal. College of Engineering, Taibah University, Madinah, 342, Saudi Arabia. Volume 21. Issue 3. P. 3784–3790.
  10. Siddiqui, O. F., Ramzan, R., Amin, M., Omar, M., Bastaki, N. Lorentz Reflect-Phase Detector for Moisture and Dielectric Sensing (2018) IEEE Sensors Journal. 18 (22), art. No. 8458134. P. 9236–9242. Cited 10 times.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361. DOI: 10.1109/JSEN.2018.2869401.
  11. Bai S., Bai Y. High Precision Algorithm of Metal Detector Based on Balance Coil (2018) ICEMS 2018 – 2018 21st International Conference on Electrical Machines and Systems, P. 684–68727 November 2018 Article number 854920321st International Conference on Electrical Machines and Systems, ICEMS 2018, Jeju, 7 October 2018 – 10 October 2018, 143160
  12. Bedenik G.a, Silveira J.a, Santos I.a, Carvalho E.a, Carvalho J.G.a, Freire R.b. Single coil metal detector and classifier based on phase measurement (2019) INSCIT 2019 – 4th International Symposium on Instrumentation Systems, Circuits and Transducers, August 2019 Article number 88683294th International Symposium on Instrumentation Systems, Circuits and Transducers, INSCIT 2019, Sao Paulo, 26 August 2019 – 30 August 2019, 152900
  13. Leonid M. Zamihovskyi, Ivan T. Levytskyi, Konrad Gromaszekb, Saule Smailovac, Ardak Akhmetovad, Azhar Sagymbekovab. Development of control system of metallic inclusions in granular materials based on the method of scanning signal. //SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100310H (28 September 2016). DOI: 10.1117/12.2249200.
  14. Trembach B., Kochan R., Trembach R. (2016) Multiplex digital correlator with high priority deployment of one of the acoustic signal receivers. Scientific Journal of TNTU (Tern.). No. 4 (84). P. 99–104. [In English].
  15. Zamikhovskyi L., Levytskyi I., Mirzoieva O., Nykolaychuk M., Development of a method for identification of metal inclusions in raw materials with automatic determination of their coordinates. The 5th International scientific and practical conference – Results of modern scientific research and development‖ (July 25–27, 2021) Barca Academy Publishing, Madrid, Spain. ISBN 978-84-15927-33-4. 2021. P. 81–89.
  16. Abramovych A., Piddubnyi V. (2017) Rationing signals from eddy current transducer for faithful comparison. Scientific Journal of TNTU (Tern.). Vol. 86. No. 2. P. 76–82. [In English].
  17. Lupenko S. A., Osukhivska H. M., Lutsyk N. S., Stadnyk N. B., Zozulia A. M., Shablii N. R. (2016) The comparative analysis of mathematical models of cyclic signals structure and processes. Scientific Journal of TNTU (Tern.). Vol. 82. No. 2. P. 115–127. [In English].
  18. Lytvynenko I. (2016) Method of the quadratic interpolation of the discrete rhythm function of the cyclical signal with a defined segment structure. Scientific Journal of TNTU (Tern.). No. 4 (84). P. 131–138. [In English].
  19. Zamikhovskiy L., Levitsky I., Nykolaychuk M. Designing a system that removes metallic inclusions from bulk raw materials on the belt conveyor. Eastern-European Journal of Enterprise Technologies. ISSN 1729-3774, 2021. No. 3/2 (111). P. 79–87.

 

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.