logo logo


Investigation of the stress-strain state of beams with different types of web perforation

НазваInvestigation of the stress-strain state of beams with different types of web perforation
Назва англійськоюInvestigation of the stress-strain state of beams with different types of web perforation
АвториIvan Pidgurskyi, Vasyl Slobodian, Denys Bykiv, Mykola Pidgurskyi
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описInvestigation of the stress-strain state of beams with different types of web perforation / Ivan Pidgurskyi, Vasyl Slobodian, Denys Bykiv, Mykola Pidgurskyi // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 103. — No 3. — P. 79–87.
Bibliographic description:Pidgurskyi I., Slobodian V., Bykiv D., Pidgurskyi M. (2021) Investigation of the stress-strain state of beams with different types of web perforation. Scientific Journal of TNTU (Tern.), vol 103, no 3, pp. 79–87.
УДК

624.014

Ключові слова

castellated beams, hexagonal, round, elliptical, oval perforation, stress-strain state, finite element method.

 

This article is devoted to evaluating the effectiveness of I-beams with different web perforations: hexagonal, round, oval and elliptical. The technology of manufacturing of castellated beams is described. For the purpose of verification the analytical calculation of the beam with hexagonal web perforation and for comparison the calculation by the finite element method is given. To correctly assess the stress-strain state, the mesh of finite elements in the area of openings was concentrated. The results of maximum normal stresses and strains obtained by different methods were compared with each other and the efficiency of using the finite element method to determine the stress-strain state of castellated beams was proved. In the castellated beams there is a complex stress-strain state, which was confirmed in this work for the most characteristic shapes of openings. Beams with hexagonal, round, oval (horizontal and vertical), elliptical and elliptical (rotated by 45°) openings are considered in the article, their geometric parameters and characteristics as well as advantages and disadvantages are described. Beams with round openings are currently the most widely used. In addition, the parameters that affect the efficiency of castellated beams with oval (horizontal and vertical) and elliptical rotated by 45° openings were identified. In this work, it was found that the shape of the openings significantly affects the stress-strain state of the castellated beams, especially for hexagonal openings, which are mainly used so far. The stress distribution in the first opening for each of the considered types of perforations and the nature of the change of σmax in other openings is shown. The stress-strain state of castellated beams was studied using the finite element method. The results of this study are of practical value because they can be used when arranging the sections and openings of castellated beams.

 

ISSN:2522-4433
Перелік літератури
  1. Sameer S. Fares P. E., S.E., P. Eng, John Coulson, P.E., David W. Dinehart, Ph.D., Castellated and cellular beam design / Aisc design guide 31– 2016 –110 p.
  2. Louson M., Bilyik A. Stalnyie konstruktsii v arhitekture: 2-e izd., isprav. i dop. Kiev: Ukrainskiy Tsentr Stalnogo Stroitelstva (UTsSS), 2015. 140 p. [In Russian].
  3. Agrawal, Vimlesh & Bhatt, Dr. A Design Comparison of Castellated Beam for Different Parameters. Kalpa Publications in Civil Engineering. Volume 1. 2017. P. 403–409.
  4. Glorieux A., Cajot L.-G. and Hanus F. (2021), Simplified design method for stiffened cellular beams against web-post buckling. ce/papers, 4: 2207-2214. URL: https://doi.org/10.1002/cepa.1540.
  5. Rohit Kurlapkar, Amruta Patil, 2021, Optimization of Various Parameters of Castellated Beam Containing Sinusoidal Openings, International Journal Of Engineering Research & Technology (IJERT). Volume 10. Issue 06 (June 2021). P. 120–123.
  6. Durif, Sébastien & Bouchair, Abdelhamid. (2012). Behavior of Cellular Beams with Sinusoidal Openings. Procedia Engineering. 40. 108–113. 10.1016/j.proeng.2012.07.064.
  7. DBN V.2.6-198:2014 Stalevi konstruktsii. Normy proektuvannia. [In Ukrainian].
  8. Rzhanitsyin A. R. Sostavnyie sterzhni i plastinki. M.: Stroyizdat, 1986. 316 р. [In Russian].
  9. Pidgurskyi M., Rudyak Y., Pidgurskyi I. (2019) Research and Modeling of Stress-Strain State and Fracture Strength of Triplexes at Temperatures 293–213 K. In: Abdel Wahab M. (eds) Proceedings of the 7th International Conference on Fracture Fatigue and Wear. FFW 2018. Lecture Notes in Mechanical Engineering. Springer, Singapore. P. 135–150. URL: https://doi.org/10.1007/978-981-13-0411-8_14.
  10. Bryantsev A. A., Absimetov V. E., Lalin V. V. Effektivnost primeneniya dvutavrov s gofrirovannyimi stenkami v proizvodstvennyih zdaniyah. Stroitelstvo unikalnyih zdaniy i sooruzheniy. 3 (54). 2017.
    Р. 93–104. [In Russian].
  11. Pritykin A. I., Lavrova A. S. (2017). Prediction of the stress level and stress concentration in cellular beams with circular openings. Mechanics Of Solid Bodies. Vol. 23. No. 4. 2017. P. 488–494.
  12. Lee H. H. Finite Element Simulations with ANSYS Workbench 19, SDC Pub., 2019.
  13. Pidhurskyi M. I., Slobodian V. V. Doslidzhennia napruzheno – deformivnoho stanu ta hranychnykh navantazhen perforovanykh balok metodom skinchenykh elementiv. Resursoekonomni materialy, konstruktsii, budivli ta sporudy. 2015. Vyp. 30. Р. 218–22. [In Ukrainian].
References:
  1. Sameer S. Fares P. E., S.E., P. Eng, John Coulson, P.E., David W. Dinehart, Ph.D., Castellated and cellular beam design / Aisc design guide 31– 2016 –110 p.
  2. Louson M., Bilyik A. Stalnyie konstruktsii v arhitekture: 2-e izd., isprav. i dop. Kiev: Ukrainskiy Tsentr Stalnogo Stroitelstva (UTsSS), 2015. 140 p. [In Russian].
  3. Agrawal, Vimlesh & Bhatt, Dr. A Design Comparison of Castellated Beam for Different Parameters. Kalpa Publications in Civil Engineering. Volume 1. 2017. P. 403–409.
  4. Glorieux A., Cajot L.-G. and Hanus F. (2021), Simplified design method for stiffened cellular beams against web-post buckling. ce/papers, 4: 2207-2214. URL: https://doi.org/10.1002/cepa.1540.
  5. Rohit Kurlapkar, Amruta Patil, 2021, Optimization of Various Parameters of Castellated Beam Containing Sinusoidal Openings, International Journal Of Engineering Research & Technology (IJERT). Volume 10. Issue 06 (June 2021). P. 120–123.
  6. Durif, Sébastien & Bouchair, Abdelhamid. (2012). Behavior of Cellular Beams with Sinusoidal Openings. Procedia Engineering. 40. 108–113. 10.1016/j.proeng.2012.07.064.
  7. DBN V.2.6-198:2014 Stalevi konstruktsii. Normy proektuvannia. [In Ukrainian].
  8. Rzhanitsyin A. R. Sostavnyie sterzhni i plastinki. M.: Stroyizdat, 1986. 316 р. [In Russian].
  9. Pidgurskyi M., Rudyak Y., Pidgurskyi I. (2019) Research and Modeling of Stress-Strain State and Fracture Strength of Triplexes at Temperatures 293–213 K. In: Abdel Wahab M. (eds) Proceedings of the 7th International Conference on Fracture Fatigue and Wear. FFW 2018. Lecture Notes in Mechanical Engineering. Springer, Singapore. P. 135–150. URL: https://doi.org/10.1007/978-981-13-0411-8_14.
  10. Bryantsev A. A., Absimetov V. E., Lalin V. V. Effektivnost primeneniya dvutavrov s gofrirovannyimi stenkami v proizvodstvennyih zdaniyah. Stroitelstvo unikalnyih zdaniy i sooruzheniy. 3 (54). 2017.
    Р. 93–104. [In Russian].
  11. Pritykin A. I., Lavrova A. S. (2017). Prediction of the stress level and stress concentration in cellular beams with circular openings. Mechanics Of Solid Bodies. Vol. 23. No. 4. 2017. P. 488–494.
  12. Lee H. H. Finite Element Simulations with ANSYS Workbench 19, SDC Pub., 2019.
  13. Pidhurskyi M. I., Slobodian V. V. Doslidzhennia napruzheno – deformivnoho stanu ta hranychnykh navantazhen perforovanykh balok metodom skinchenykh elementiv. Resursoekonomni materialy, konstruktsii, budivli ta sporudy. 2015. Vyp. 30. Р. 218–22. [In Ukrainian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.