logo logo


Calculation of electric potentials on the surfaces of interaction of deformable metal bodies with hydrogen-containing environment

НазваCalculation of electric potentials on the surfaces of interaction of deformable metal bodies with hydrogen-containing environment
Назва англійськоюCalculation of electric potentials on the surfaces of interaction of deformable metal bodies with hydrogen-containing environment
АвториMykola Stashchuk, Petro Pukach, Evgen Irza, Roman Hromyak, Nazar Stashchuk
ПринадлежністьKarpenko Physico-mechanical Institute of the NAS of Ukraine, Lviv, Ukraine Lviv Politechnic National University, Lviv, Ukraine The Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine Ternopil Ivam Puluj National Technical University, Ternopil, Ukraine Technical College of Lviv Politechnic National University, Lviv, Ukraine
Бібліографічний описCalculation of electric potentials on the surfaces of interaction of deformable metal bodies with hydrogen-containing environment / Mykola Stashchuk, Petro Pukach, Evgen Irza, Roman Hromyak, Nazar Stashchuk // Scientific Journal of TNTU. — Tern.: TNTU, 2021. — Vol 104. — No 4. — P. 98–108.
Bibliographic description:Stashchuk M., Pukach P., Irza E., Hromyak R., Stashchuk N. (2021) Calculation of electric potentials on the surfaces of interaction of deformable metal bodies with hydrogen-containing environment. Scientific Journal of TNTU (Tern.), vol 104, no 4, pp. 98–108.
DOI: https://doi.org/10.33108/visnyk_tntu2021.04.098
УДК

539.4

Ключові слова

deformable metal bodies, electric potential, dielectric constant, electrical double layer, electrostrictive ratio, volume dilatation, specific capacitance of metal, charge density, hydrogen-containing medium.

In most cases the metal structures service under operating conditions results in the fact that these structures or their certain elements are constantly affected not only by mechanical factors (load, residual stresses, etc.), but also by the environment. Elements of pipelines, load-bearing sections of thermal and hydroelectric power stations, metal structures of bridges are all influenced by the environment that fills or surrounds them. Such environment depending on the content of acids and alkalis, a number of hydrogen-containing media can be corrosive. It should be also noted that the influence of such corrosive environment and mechanical factors influence are simultaneous and interrelated resulting very often in brittle or quasi-brittle metal fracture. Therefore, the problem of estimating the basic metal structures engineering parameters (strength, reliability, etc.) that are corroded by the simultaneous action of mechanical force factors, is currently an important problem of industrial operation. The paper presents problems based on the theory of elasticity, electrodynamics, theoretical electrochemistry and equations of mathematical physics. According to the established analytical ratios for the calculations of effective electric potentials and the corresponding numerical experiments, the estimation of electric potentials on the surfaces of interaction of deformable metal bodies with hydrogen-containing medium is carried out.

ISSN:2522-4433
Перелік літератури
  1. Stashchuk M. H., Irza Ye. M. Optymizatsiia rezhymiv termoobrobky elementiv konstruktsii z funktsionalno-hradiientnykh materialiv. Fiz.-khim. mekhanika materialiv. 2020. 56. No. 1. P. 101–105.
  2. Stashchuk N. H. Zadachy mekhanyky upruhykh tel s treshchynopodobnуmy defektamy. K.: Nauk. dumka, 1993. 358 р.
  3. Stashchuk M. H. Vyznachennia elektrodnoho potentsialu ta strumiv korozii uzdovzh poverkhon kontsentratoriv napruzhen. Mekhanika ruinuvannia materialiv i mitsnist konstruktsii. Vypusk 2: V 3-kh t. / pid zah. red. Panasiuka V. V. Lviv: Kameniar, 1999. T. 2. Р. 213–219.
  4. Stashchuk M. H. Elektrodnyi potentsial na mezhi “napruzhenyi metal-seredovyshche”. Problemy korozii ta koroziinoho zakhystu materialiv. 2000. No. 1. Р. 222–225.
  5. Antropov L. I. Teoretychna elektrokhimiia. K.: Lybid, 1993. 544 р.
  6. Burak Ya. Y., Halapats B. P., Hnidets B. M. Fizyko-mekhanichni protsesy v elektroprovidnykh tilakh. Kyiv: Nauk. dumka, 1978. 232 р.
  7. Frolov Yu. H. Kurs kolloydnoi khymyy. Poverkhnostnуe yavlenyia y dyspersnye systemy. M.: Khymyia, 1988. 464 р.
  8. Yzmailov N. A. Elektrokhymyia rastvorov. M.: Khymyia, 1976. 488 p.
  9. Tykhonov A. N., Samarskyi A. A. Uravnenyia matematycheskoi fyzyky. M.: Nauka, 1977. 736 p.
  10. Matveev A. N. Elektrodynamyka. M.: Vyssh. shkola, 1981. 383 p.
  11. Yossel Yu. Ya., Klenov H. E. Matematycheskye metody rascheta elektrokhymycheskoi korrozyy y zashchyty metallov. Sprav. yzd. M.: Metallurhyia, 1984. 272 p.
  12. Pukach P. Ya. Yakisni metody doslidzhennia neliniinykh kolyvalnykh system: Lviv: Vydavnytstvo Lvivskoi politekhniky, 2014. 288 p.
  13. Stashchuk M., Dorosh M. Evaluation of hydrogen stresses in metal and redistribution of hydrogen around crack-like defects. International journal of hydrogen energy. 37. 2012. 14687–14696 p.
  14. Stashchuk M., Nytrebych Z., Hromyak R. Evaluation of theoretical strength of porous materials according to catastrophe theory. Scientific journal of TNTU. 2020. No. 3 (99). P. 44–54.
  15. Stashchuk M., Boiko V., Hromyak R. Determination of hydrogen concentration influence on stresses in structures. Scientific journal of TNTU. 2019. No. 2 (94). P. 134–143.
  16. Stashchuk M. H. Influence of Hydrogen Concentration on the Stresses in a Solid Metallic Cylinder. Materials Science. 2018. Vol. 53. No. 6. P. 823–831.
  17. Tkachev V. I., Levina I. M., Ivas'kevych L. M. Distinctive features of hydrogen degradation of heat-resistant alloys based on nickel. Mater Sci. 33. No. 4. 1997. Р. 524–531.
  18. Maksimovich G., Kholodnyi V., Belov V., Tretyak I., Ivas'kevich L., Slipchenko T. Influence of gaseous hydrogen on the strength and plasticity of high- temperature strength nickel alloys. Soviet Materials Science. 20. No. 3. 1984. Р. 252–255.
References:
  1. Stashchuk M. H., Irza Ye. M. Optymizatsiia rezhymiv termoobrobky elementiv konstruktsii z funktsionalno-hradiientnykh materialiv. Fiz.-khim. mekhanika materialiv. 2020. 56. No. 1. P. 101–105.
  2. Stashchuk N. H. Zadachy mekhanyky upruhykh tel s treshchynopodobnуmy defektamy. K.: Nauk. dumka, 1993. 358 р.
  3. Stashchuk M. H. Vyznachennia elektrodnoho potentsialu ta strumiv korozii uzdovzh poverkhon kontsentratoriv napruzhen. Mekhanika ruinuvannia materialiv i mitsnist konstruktsii. Vypusk 2: V 3-kh t. / pid zah. red. Panasiuka V. V. Lviv: Kameniar, 1999. T. 2. Р. 213–219.
  4. Stashchuk M. H. Elektrodnyi potentsial na mezhi “napruzhenyi metal-seredovyshche”. Problemy korozii ta koroziinoho zakhystu materialiv. 2000. No. 1. Р. 222–225.
  5. Antropov L. I. Teoretychna elektrokhimiia. K.: Lybid, 1993. 544 р.
  6. Burak Ya. Y., Halapats B. P., Hnidets B. M. Fizyko-mekhanichni protsesy v elektroprovidnykh tilakh. Kyiv: Nauk. dumka, 1978. 232 р.
  7. Frolov Yu. H. Kurs kolloydnoi khymyy. Poverkhnostnуe yavlenyia y dyspersnye systemy. M.: Khymyia, 1988. 464 р.
  8. Yzmailov N. A. Elektrokhymyia rastvorov. M.: Khymyia, 1976. 488 p.
  9. Tykhonov A. N., Samarskyi A. A. Uravnenyia matematycheskoi fyzyky. M.: Nauka, 1977. 736 p.
  10. Matveev A. N. Elektrodynamyka. M.: Vyssh. shkola, 1981. 383 p.
  11. Yossel Yu. Ya., Klenov H. E. Matematycheskye metody rascheta elektrokhymycheskoi korrozyy y zashchyty metallov. Sprav. yzd. M.: Metallurhyia, 1984. 272 p.
  12. Pukach P. Ya. Yakisni metody doslidzhennia neliniinykh kolyvalnykh system: Lviv: Vydavnytstvo Lvivskoi politekhniky, 2014. 288 p.
  13. Stashchuk M., Dorosh M. Evaluation of hydrogen stresses in metal and redistribution of hydrogen around crack-like defects. International journal of hydrogen energy. 37. 2012. 14687–14696 p.
  14. Stashchuk M., Nytrebych Z., Hromyak R. Evaluation of theoretical strength of porous materials according to catastrophe theory. Scientific journal of TNTU. 2020. No. 3 (99). P. 44–54.
  15. Stashchuk M., Boiko V., Hromyak R. Determination of hydrogen concentration influence on stresses in structures. Scientific journal of TNTU. 2019. No. 2 (94). P. 134–143.
  16. Stashchuk M. H. Influence of Hydrogen Concentration on the Stresses in a Solid Metallic Cylinder. Materials Science. 2018. Vol. 53. No. 6. P. 823–831.
  17. Tkachev V. I., Levina I. M., Ivas'kevych L. M. Distinctive features of hydrogen degradation of heat-resistant alloys based on nickel. Mater Sci. 33. No. 4. 1997. Р. 524–531.
  18. Maksimovich G., Kholodnyi V., Belov V., Tretyak I., Ivas'kevich L., Slipchenko T. Influence of gaseous hydrogen on the strength and plasticity of high- temperature strength nickel alloys. Soviet Materials Science. 20. No. 3. 1984. Р. 252–255.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.