logo logo


Influence of oblique geometry of cutting inserts of finishing face mills on cutting forces

НазваInfluence of oblique geometry of cutting inserts of finishing face mills on cutting forces
Назва англійськоюInfluence of oblique geometry of cutting inserts of finishing face mills on cutting forces
АвториHeorhii Vyhovskyi, Nataliia Balytska, Mykola Plysak, Valentyn Otamanskyi
ПринадлежністьZhytomyr Polytechnic State University, Zhytomyr, Ukraine Technische Universität Dresden, Germany
Бібліографічний описInfluence of oblique geometry of cutting inserts of finishing face mills on cutting forces / Heorhii Vyhovskyi, Nataliia Balytska, Mykola Plysak, Valentyn Otamanskyi // Scientific Journal of TNTU. — Tern.: TNTU, 2022. — Vol 108. — No 4. — P. 54–63.
Bibliographic description:Vyhovskyi H., Balytska N., Plysak M., Otamanskyi V. (2022) Influence of oblique geometry of cutting inserts of finishing face mills on cutting forces. Scientific Journal of TNTU (Tern.), vol 108, no 4, pp. 54–63.
УДК

621.914.22

Ключові слова

face milling, simulation, oblique cutting, cutting forces, finishing.

The feasibility of using face milling for the final formation of the parts surface layer is confirmed by a large number of scientific works. At the same time, there are significant advantages of technological processes using face mills for oblique cutting, equipped with superhard materials, with a spiral-stepped arrangement of cutting inserts. This work is devoted to the study of the influence of the inclination angle of the oblique face mill cutting edge on the cutting forces when processing the workpiece flat surface made of gray cast iron and carbon tool steel using the Deform-3D program. The influence of the cutting edge inclination in the range from 0 to -45º on the smoothness of penetration of the face mill inserts into the workpiece is discussed.

ISSN:2522-4433
Перелік літератури
  1. Stephenson D. A., Agapiou, J. S. Metal cutting theory and practice. CRC Press, 2016, 931 p.
  2. Grzesik W. Machining of hard materials. In: Machining, Springer, London, 2008. P. 97–126. URL: https://doi.org/10.1007/978-1-84800-213-5_4.
  3. Uhlmann E., Sammler F., Barry J., Fuentes J., Richarz S. Superhard Tools. In: Laperrière, L., Reinhart, G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg, 2014. P. 1183–1188. URL: https://doi.org/10.1007/978-3-642-20617-7_6411.
  4. Vyhovskyi H. M. Pidvyshchennia pratsezdatnosti tortsevykh frez dlia chystovoi obrobky ploskykh poverkhon. Diss. kand. tek. nauk. Kyiv, 2000. 16 p. [In Ukrainian].
  5. Hlembotska L., Melnychuk P., Balytska N., Melnyk O. Modelling the loadyng of the nose-free cutting edges of face mill with a spiral-stepped arrangement of inserts, Eastern-European Journal of Enterprise Technologies. Vol. 9. No. 1. P. 46–54. URL: https://doi.org/10.15587/1729-4061.2018.121712.
  6. Stepchyn Ya. A. Porivnialna kharakterystyka dynamiky protsesiv tortsevoho frezeruvannia frezamy standartnykh ta spetsialnykh konstruktsii. Visnyk ZhDTU. Seriia “Tekhnichni nauky”. Vol. 72. No. 1. 2016. P. 51–56. [In Ukrainian].
  7. Hromovyi O. A., Vyhovskyi H. M., Balytska N. O. Shliakhy udoskonalennia protsesu obrobky ploskykh poverkhon detalei frezeruvanniam. Tekhnichna inzheneriia. Vol. 86. No. 2. 2020. P. 48–53. [In Ukrainian]. URL: https://doi.org/10.26642/ten-2020-2(86)-48-53.
  8. Muñoz-Escalona P., Maropoulos P. G. A geometrical model for surface roughness prediction when
    face milling Al 7075-T7351 with square insert tools. Journal of Manufacturing Systems. Vol. 36. 2015.
    P. 216–223. URL: https://doi.org/10.1016/j.jmsy.2014.06.011.
  9. Hlembotska L., Balytska N., Melnychuk P., Vyhovskyi H. Structural improvement of face mills designs based on systems approach. Scientific Journal of TNTU. Vol. 101. No. 1. 2021. P. 102–114. URL: https: //doi.org/10.33108/visnyk_tntu2021.01.102.
  10. Schultheiss F., Bushlya V., Lenrick F., Johansson D., Kristiansson S., J.E. Ståhl. Tool wear mechanisms of pcBN tooling during high-speed machining of gray cast iron. Procedia CIRP. Vol. 77. 2018. P. 606–609. URL: https://doi.org/10.1016/j.procir.2018.08.201.
  11. Soshi M., Fonda P., Kashihara M. et al. A study on cubic boron nitride (CBN) milling of hardened cast iron for productive and quality manufacturing of machine tool structural components. Int. J. Adv. Manuf. Technol. Vol. 65. 2013. P. 1485–1491. URL: https://doi.org/10.1007/s00170-012-4272-3.
  12. Sahin Y. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels. Journal of Materials Processing Technology. Vol. 209. No. 7. 2009. P. 3478–3489. URL: https://doi.org/10.1016/j.jmatprotec.2008.08.016.
  13. Smith G. T. Cutting Tool Technology. Industrial Handbook, Springer-Verlag, GmbH, 2008, 600 p.
  14. Novikov N. V., Klimenko S. A. Instrumenty iz sverkhtverdykh materialov. Moscov: Mashinostroenie, 2014. 608 p. [In Russian]
  15. Cui X., Zhao J., Tian X. Cutting forces, chip formation, and tool wear in high-speed face milling of AISI H13 steel with CBN tools. Int. J. Adv. Manuf. Technol. Vol. 64. 2013. P. 1737–1749. URL: https://doi.org/ 10.1007/s00170-012-4137-9.
  16. Kumar Wagri N., Petare A., Agrawal A., Rai R., Malviya R., Dohare S., Kishore K. An Overview of the Machinability of Alloy Steel. Materials Today. Proceedings. Vol. 62. No. 6. 2022. P. 3771–3781. URL: https://doi.org/10.1016/j.matpr.2022.04.457.
  17. Ivanov I. U. Frezerovanie korpusnykh i bazovykh detalei frezami osnashchennymi reztsami iz elbora-R. Tekhnologiia proizvodstva, nauchnaia organizatsiia truda i upravleniia. Vol. 2. 1979. Р. 26–31. [In Russian].
  18. Shevchenko N. A., Kipper E. E. Chistovye lezviinye instrumenty s bolshim uglom naklona rezhushchikh lezvii. Nadezhnost rezhushchego instrumenta. Vol. 2. 1975. P. 222–228. [In Russian].
  19. Klimenko S. A., Manokhin A. S. Tverdoe breiushchee tochenie. Sverkhtverdye materialy. Vol. 1. 2009. P. 58–74. [In Russian].
  20. Klimenko S. A., Manokhin A. S., Melniichuk Y. A. Wear and life of tools with inserts from cBN-based polycrystalline superhard materials in the finish turning of hardened steels at heavy feeds. Journal of Superhard Materials,. Vol. 34. No. 1. 2012. P. 49–55. URL: https://doi.org/10.3103/S1063457612010066.
  21. Daoud M., Chatelain J. F., Bouzid A. Effect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int. J. Adv. Manuf. Technol. Vol. 81. 2015. P. 1987–1997. URL: https://doi.org/10.1007/s00170-015-7179-y.
  22. Shrot A., Bäker M. Is it possible to identify Johnson-Cook law parameters from machining simulations? International Journal of Material Forming. Vol. 3. 2010. P. 443–446. URL:https://doi.org/10.1007/s12289-010-0802-4.
  23. Tapoglou N., Antoniadis A. 3-dimensional kinematics simulation of face milling. Measurement. Vol. 45. No. 6. 2012. P. 1396–1405. URL: https://doi.org/10.1016/j.measurement.2012.03.026.
  24. Hlembotska L., Balytska N., Melnychuk P., Melnyk O. Computer modelling power load of face mills with cylindrical rake face of inserts in machining difficult-to-cut materials. Scientific Journal of TNTU. Vol. 93. No. 1. 2019. P. 70–80. URL: https://doi.org/10.33108/visnyk_tntu2019.01.070.
  25. Li G., Rahim M. Z., Pan W., Wen C., Ding S. The manufacturing and the application of polycrystalline diamond tools – A comprehensive review. Journal of Manufacturing Processes. Vol. 56. 2020. P. 400–416. URL: https://doi.org/10.1016/j.jmapro.2020.05.010.
  26. Dobrotvorsky S. S., Basova E. V., Dobrovolskaya L. G. Computer design and simulation of technological processes of high-speed milling of hardened steels. Bulletin of Lviv Polytechnic National University. Vol. 822. 2015. P. 1–6.
  27. Vyhovskyi H., Plysak M., Balytska N., Hlembotska L., Otamanskyi V. Numerical Simulation of Cutting Forces in Face Milling. Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering, Springer, Cham, 2023. P. 222–231. URL: https://doi.org/10.1007/978-3-031-16651-8_21.
  28. Chernykh D. M., Tkachenko Yu. S., Tsyganov V. S. Simulation of the machining process in order to optimize the operating parameters. Bulletin of the Voronezh State Technical University. Vol. 15. No. 1. 2019. P. 130–137.
  29. Vovk A., Sölter J., Karpuschewski B. Finite element simulations of the material loads and residual stresses in milling utilizing the CEL method. Procedia CIRP. Vol. 87. 2020. P. 539–544. URL: http://dx.doi.org/ 10.1016/j.procir.2020.03.005.
  30. Sheth S., George P. M. Experimental investigation and prediction of flatness and surface roughness during face milling operation of WCB material. Procedia Technol. Vol. 23. 2016. Р. 344–351. URL: https:// doi.org/10.1016/j.protcy.2016.03.036.
  31. Vyhovskyi H., Plysak M., Balytska N., Melnyk O., Hlembotska L. Engineering methodology for determining elastic displacements of the joint “spindle assembly-face milling cutter” while machining planes. In: Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021. P. 258–268. URL: https://doi.org/10.1007/978-3-030-68014-5_26.
  32. Wu W. P. Investigation of the effects of face-milling parameters of ultra-large-scale plane on milling quality. Int. J. Adv. Manuf. Technol. Vol. 37. 2008. P. 241–249. URL: https://doi.org/10.1007/s00170-007-0976-1.
  33. Sheth S., George P. Experimental investigation and optimization of flatness and surface roughness using grey relational analysis for WCB material during face milling operation. Advances in Intelligent Systems Research. Vol. 137. 2017. P. 65–70.
  34. Chauhan P., Patel S., Patel K. Experimenting and predicting flatness and surface roughness during face milling operation of CF8M grade A-351. In: International Conference on Research and Innovations in Science. Engineering &Technology. Vol. 1. No. 1. 2017. P. 537–547. URL: https://doi.org/10.29007/dcj5.
  35. Borysenko D., Karpuschewski B., Welzel F., Kundrák J., Felhő C. Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling. CIRP Journal of Manufacturing Science and Technology. Vol. 24. 2019. P. 1–5. URL: https://doi.org/10.1016/j.cirpj.2018.12.003.
References:
  1. Stephenson D. A., Agapiou, J. S. Metal cutting theory and practice. CRC Press, 2016, 931 p.
  2. Grzesik W. Machining of hard materials. In: Machining, Springer, London, 2008. P. 97–126. URL: https://doi.org/10.1007/978-1-84800-213-5_4.
  3. Uhlmann E., Sammler F., Barry J., Fuentes J., Richarz S. Superhard Tools. In: Laperrière, L., Reinhart, G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg, 2014. P. 1183–1188. URL: https://doi.org/10.1007/978-3-642-20617-7_6411.
  4. Vyhovskyi H. M. Pidvyshchennia pratsezdatnosti tortsevykh frez dlia chystovoi obrobky ploskykh poverkhon. Diss. kand. tek. nauk. Kyiv, 2000. 16 p. [In Ukrainian].
  5. Hlembotska L., Melnychuk P., Balytska N., Melnyk O. Modelling the loadyng of the nose-free cutting edges of face mill with a spiral-stepped arrangement of inserts, Eastern-European Journal of Enterprise Technologies. Vol. 9. No. 1. P. 46–54. URL: https://doi.org/10.15587/1729-4061.2018.121712.
  6. Stepchyn Ya. A. Porivnialna kharakterystyka dynamiky protsesiv tortsevoho frezeruvannia frezamy standartnykh ta spetsialnykh konstruktsii. Visnyk ZhDTU. Seriia “Tekhnichni nauky”. Vol. 72. No. 1. 2016. P. 51–56. [In Ukrainian].
  7. Hromovyi O. A., Vyhovskyi H. M., Balytska N. O. Shliakhy udoskonalennia protsesu obrobky ploskykh poverkhon detalei frezeruvanniam. Tekhnichna inzheneriia. Vol. 86. No. 2. 2020. P. 48–53. [In Ukrainian]. URL: https://doi.org/10.26642/ten-2020-2(86)-48-53.
  8. Muñoz-Escalona P., Maropoulos P. G. A geometrical model for surface roughness prediction when
    face milling Al 7075-T7351 with square insert tools. Journal of Manufacturing Systems. Vol. 36. 2015.
    P. 216–223. URL: https://doi.org/10.1016/j.jmsy.2014.06.011.
  9. Hlembotska L., Balytska N., Melnychuk P., Vyhovskyi H. Structural improvement of face mills designs based on systems approach. Scientific Journal of TNTU. Vol. 101. No. 1. 2021. P. 102–114. URL: https: //doi.org/10.33108/visnyk_tntu2021.01.102.
  10. Schultheiss F., Bushlya V., Lenrick F., Johansson D., Kristiansson S., J.E. Ståhl. Tool wear mechanisms of pcBN tooling during high-speed machining of gray cast iron. Procedia CIRP. Vol. 77. 2018. P. 606–609. URL: https://doi.org/10.1016/j.procir.2018.08.201.
  11. Soshi M., Fonda P., Kashihara M. et al. A study on cubic boron nitride (CBN) milling of hardened cast iron for productive and quality manufacturing of machine tool structural components. Int. J. Adv. Manuf. Technol. Vol. 65. 2013. P. 1485–1491. URL: https://doi.org/10.1007/s00170-012-4272-3.
  12. Sahin Y. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels. Journal of Materials Processing Technology. Vol. 209. No. 7. 2009. P. 3478–3489. URL: https://doi.org/10.1016/j.jmatprotec.2008.08.016.
  13. Smith G. T. Cutting Tool Technology. Industrial Handbook, Springer-Verlag, GmbH, 2008, 600 p.
  14. Novikov N. V., Klimenko S. A. Instrumenty iz sverkhtverdykh materialov. Moscov: Mashinostroenie, 2014. 608 p. [In Russian]
  15. Cui X., Zhao J., Tian X. Cutting forces, chip formation, and tool wear in high-speed face milling of AISI H13 steel with CBN tools. Int. J. Adv. Manuf. Technol. Vol. 64. 2013. P. 1737–1749. URL: https://doi.org/ 10.1007/s00170-012-4137-9.
  16. Kumar Wagri N., Petare A., Agrawal A., Rai R., Malviya R., Dohare S., Kishore K. An Overview of the Machinability of Alloy Steel. Materials Today. Proceedings. Vol. 62. No. 6. 2022. P. 3771–3781. URL: https://doi.org/10.1016/j.matpr.2022.04.457.
  17. Ivanov I. U. Frezerovanie korpusnykh i bazovykh detalei frezami osnashchennymi reztsami iz elbora-R. Tekhnologiia proizvodstva, nauchnaia organizatsiia truda i upravleniia. Vol. 2. 1979. Р. 26–31. [In Russian].
  18. Shevchenko N. A., Kipper E. E. Chistovye lezviinye instrumenty s bolshim uglom naklona rezhushchikh lezvii. Nadezhnost rezhushchego instrumenta. Vol. 2. 1975. P. 222–228. [In Russian].
  19. Klimenko S. A., Manokhin A. S. Tverdoe breiushchee tochenie. Sverkhtverdye materialy. Vol. 1. 2009. P. 58–74. [In Russian].
  20. Klimenko S. A., Manokhin A. S., Melniichuk Y. A. Wear and life of tools with inserts from cBN-based polycrystalline superhard materials in the finish turning of hardened steels at heavy feeds. Journal of Superhard Materials,. Vol. 34. No. 1. 2012. P. 49–55. URL: https://doi.org/10.3103/S1063457612010066.
  21. Daoud M., Chatelain J. F., Bouzid A. Effect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int. J. Adv. Manuf. Technol. Vol. 81. 2015. P. 1987–1997. URL: https://doi.org/10.1007/s00170-015-7179-y.
  22. Shrot A., Bäker M. Is it possible to identify Johnson-Cook law parameters from machining simulations? International Journal of Material Forming. Vol. 3. 2010. P. 443–446. URL:https://doi.org/10.1007/s12289-010-0802-4.
  23. Tapoglou N., Antoniadis A. 3-dimensional kinematics simulation of face milling. Measurement. Vol. 45. No. 6. 2012. P. 1396–1405. URL: https://doi.org/10.1016/j.measurement.2012.03.026.
  24. Hlembotska L., Balytska N., Melnychuk P., Melnyk O. Computer modelling power load of face mills with cylindrical rake face of inserts in machining difficult-to-cut materials. Scientific Journal of TNTU. Vol. 93. No. 1. 2019. P. 70–80. URL: https://doi.org/10.33108/visnyk_tntu2019.01.070.
  25. Li G., Rahim M. Z., Pan W., Wen C., Ding S. The manufacturing and the application of polycrystalline diamond tools – A comprehensive review. Journal of Manufacturing Processes. Vol. 56. 2020. P. 400–416. URL: https://doi.org/10.1016/j.jmapro.2020.05.010.
  26. Dobrotvorsky S. S., Basova E. V., Dobrovolskaya L. G. Computer design and simulation of technological processes of high-speed milling of hardened steels. Bulletin of Lviv Polytechnic National University. Vol. 822. 2015. P. 1–6.
  27. Vyhovskyi H., Plysak M., Balytska N., Hlembotska L., Otamanskyi V. Numerical Simulation of Cutting Forces in Face Milling. Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering, Springer, Cham, 2023. P. 222–231. URL: https://doi.org/10.1007/978-3-031-16651-8_21.
  28. Chernykh D. M., Tkachenko Yu. S., Tsyganov V. S. Simulation of the machining process in order to optimize the operating parameters. Bulletin of the Voronezh State Technical University. Vol. 15. No. 1. 2019. P. 130–137.
  29. Vovk A., Sölter J., Karpuschewski B. Finite element simulations of the material loads and residual stresses in milling utilizing the CEL method. Procedia CIRP. Vol. 87. 2020. P. 539–544. URL: http://dx.doi.org/ 10.1016/j.procir.2020.03.005.
  30. Sheth S., George P. M. Experimental investigation and prediction of flatness and surface roughness during face milling operation of WCB material. Procedia Technol. Vol. 23. 2016. Р. 344–351. URL: https:// doi.org/10.1016/j.protcy.2016.03.036.
  31. Vyhovskyi H., Plysak M., Balytska N., Melnyk O., Hlembotska L. Engineering methodology for determining elastic displacements of the joint “spindle assembly-face milling cutter” while machining planes. In: Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021. P. 258–268. URL: https://doi.org/10.1007/978-3-030-68014-5_26.
  32. Wu W. P. Investigation of the effects of face-milling parameters of ultra-large-scale plane on milling quality. Int. J. Adv. Manuf. Technol. Vol. 37. 2008. P. 241–249. URL: https://doi.org/10.1007/s00170-007-0976-1.
  33. Sheth S., George P. Experimental investigation and optimization of flatness and surface roughness using grey relational analysis for WCB material during face milling operation. Advances in Intelligent Systems Research. Vol. 137. 2017. P. 65–70.
  34. Chauhan P., Patel S., Patel K. Experimenting and predicting flatness and surface roughness during face milling operation of CF8M grade A-351. In: International Conference on Research and Innovations in Science. Engineering &Technology. Vol. 1. No. 1. 2017. P. 537–547. URL: https://doi.org/10.29007/dcj5.
  35. Borysenko D., Karpuschewski B., Welzel F., Kundrák J., Felhő C. Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling. CIRP Journal of Manufacturing Science and Technology. Vol. 24. 2019. P. 1–5. URL: https://doi.org/10.1016/j.cirpj.2018.12.003.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.