logo logo


Sensors on the surface acoustic waves for intelligent systems

НазваSensors on the surface acoustic waves for intelligent systems
Назва англійськоюSensors on the surface acoustic waves for intelligent systems
АвториMariana Seneta
ПринадлежністьLviv Polythechnic National University, Lviv, Ukraine
Бібліографічний описSensors on the surface acoustic waves for intelligent systems / Mariana Seneta // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 110. — No 2. — P. 75–86.
Bibliographic description:Seneta M. (2023) Sensors on the surface acoustic waves for intelligent systems. Sensors on the surface acoustic waves for intelligent systems. Scientific Journal of TNTU (Tern.), vol 110, no 2, pp. 75–86.
DOI: https://doi.org/10.33108/visnyk_tntu2023.02.075
УДК

004.896+ 621.382.01+ 621.315.592

Ключові слова

intelligent sensors, surface acoustic wave, semiconductor, adsorbed atoms, measurement, temperature-concentration coefficient.

The work is aimed at the study of surface processes on the dynamically deformed adsorbed surface of semiconductors, which will be used as a sensitive substrate in radiometric temperature sensors. The choice of semiconductors with a zinc blende structure is explained by the sensitivity of such electronic subsystem to the deformation of the crystal lattice, which can be caused by the self-consistent redistribution of defects, inconsistency of the parameters of the crystal lattice, or external factors, for example, the influence of mechanical or electric fields. Based on established regularities of the influence of the concentration and type of adsorbed atoms on the spectrum of surface electronic states and the distribution of electron density on the dynamically deformed adsorbed surface of a single crystal, the development of a new class of intelligent sensors with increased accuracy of measuring the concentration of adsorbed atoms and temperature on surface acoustic waves is proposed. Such a new approach is based on the self-consistent effect of the deformation of the crystal lattice on the dispersion law and the spectral width of the phonon mode, the electric charge density, and the energy displacement of the edges of the allowed zones. It is calculated the temperature-concentration coefficient of the resonance frequency of the surface acoustic wave and the regularities of its change depending on the concentration of adsorbed atoms are established. The relevance of this research is determined both by the needs of fundamental research and by applied aspects of development, optimization and cost reduction of the process of designing and creating devices, the functioning of which is carried out on surface acoustic waves.

ISSN:2522-4433
Перелік літератури
  1. Lepikh Ya. I., Evtukh A.A. & Romanov V.A. (2013). Modern microelectronic sensors for intelligent systems. Visnyk of the National Academy of Sciences of Ukraine, 4, 40–49.
  2. Javaid M., Haleem A., Singh R.P., Rab Sh., Suman R. (2021). Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International, 2, 100110. https://doi.org/10.1016/j.sintl.2021.100110
  3. Devkota J., Ohodnicki P., Greve D. (2017). SAW sensors for chemical vapors and gases. Sensors, 17, 801: 1–28.
  4. Müller С., Nаteрrоv А., Оbermeier G., Klemm M., Tsurkаn V., Wixfоrth А., Tideсks R., Hоrn S. (2016). Surfасe асоustiс devises. Рrос. оf SРIE, 6474, 647415:1–13.
  5. Liu B., Chen X., Cai H., Mohammad A.M., Tian X., Tao L., Yang Y., Ren T. (2016). Surfаce аcоustic wаve devices fоr sensоr аpplicаtiоns. Jоurnаl оf Semicоnductоrs, 37 (2), 021001: 1–9, doi:10.1088/1674-4926/37/2/021001.
  6. Borrero G.A., Bravo J.P., Mora S.F., Velásquez S., Segura-Quijano F.E. (2013). Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models. Sensors and Actuators, A 203, 204–214.
  7. Zhovnir M.F. (2016). Piezoelectric film waveguides for surface acoustic waves Journal of nano- and electronic physics, 8 (4), 04007: 1–7.
  8. Vlasenko A.I., Baidullaeva A., Veleschuk V.P., Mozol P.E., Boiko N.I. (2015). On the formation of nanostructures on a CdTe surface, stimulated by surface acoustic waves under nanosecond laser irradiation. Semiconductors, 49, 229–233.
  9. Evyapan M., Dunbar A.D.F. (2016). Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Applied Surface Science, 362, 191–201.
  10. Liu N., Zhou S. (2017). Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 28, 175708:1–11.
  11. Temperature Sensor Market by Product Type. https://www.marketsandmarkets.com/Market-Reports/temperature-sensor-market-522.html
  12. RF Semicohductor Market by Device. https://www.marketsandmarkets.com/Market-Reports/rf-power-semiconductor-market-79671536.html
  13. Peleshchak R.M., Seneta M.Ya. (2018). The theory of electron states on the dynamically deformed adsorbed surface of a solid. Condensed Matter Physics, 21 (2), 23701: 1–9. doi: 10.5488/CMP.21.23701.
  14. Seneta M.Ya., Peleshchak R.M. (2017). Deformation potential of acoustic quasi-Rayleigh wave interacting with adsorbed atoms. Journal of Nano- and Electronic Physics, 9 (3), 03032. https://doi.org/10.21272/jnep.9(3).03032.
  15. Duplaa F., Renoirta M.-S., Gonona M., Smaginb N., Duquennoyb M., Marticc G., Erauwc J.-P. (2020). A lead-free non-ferroelectric piezoelectric glass-ceramic for high temperature surface acoustic wave devices. Journal of the European Ceramic Society, 40 (11), 3759-3765. https://doi.org/10.1016/j.jeurceramsoc.2020.01.051 
References:
  1. Lepikh Ya. I., Evtukh A.A. & Romanov V.A. (2013). Modern microelectronic sensors for intelligent systems. Visnyk of the National Academy of Sciences of Ukraine, 4, 40–49.
  2. Javaid M., Haleem A., Singh R.P., Rab Sh., Suman R. (2021). Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International, 2, 100110. https://doi.org/10.1016/j.sintl.2021.100110
  3. Devkota J., Ohodnicki P., Greve D. (2017). SAW sensors for chemical vapors and gases. Sensors, 17, 801: 1–28.
  4. Müller С., Nаteрrоv А., Оbermeier G., Klemm M., Tsurkаn V., Wixfоrth А., Tideсks R., Hоrn S. (2016). Surfасe асоustiс devises. Рrос. оf SРIE, 6474, 647415:1–13.
  5. Liu B., Chen X., Cai H., Mohammad A.M., Tian X., Tao L., Yang Y., Ren T. (2016). Surfаce аcоustic wаve devices fоr sensоr аpplicаtiоns. Jоurnаl оf Semicоnductоrs, 37 (2), 021001: 1–9, doi:10.1088/1674-4926/37/2/021001.
  6. Borrero G.A., Bravo J.P., Mora S.F., Velásquez S., Segura-Quijano F.E. (2013). Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models. Sensors and Actuators, A 203, 204–214.
  7. Zhovnir M.F. (2016). Piezoelectric film waveguides for surface acoustic waves Journal of nano- and electronic physics, 8 (4), 04007: 1–7.
  8. Vlasenko A.I., Baidullaeva A., Veleschuk V.P., Mozol P.E., Boiko N.I. (2015). On the formation of nanostructures on a CdTe surface, stimulated by surface acoustic waves under nanosecond laser irradiation. Semiconductors, 49, 229–233.
  9. Evyapan M., Dunbar A.D.F. (2016). Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Applied Surface Science, 362, 191–201.
  10. Liu N., Zhou S. (2017). Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 28, 175708:1–11.
  11. Temperature Sensor Market by Product Type. https://www.marketsandmarkets.com/Market-Reports/temperature-sensor-market-522.html
  12. RF Semicohductor Market by Device. https://www.marketsandmarkets.com/Market-Reports/rf-power-semiconductor-market-79671536.html
  13. Peleshchak R.M., Seneta M.Ya. (2018). The theory of electron states on the dynamically deformed adsorbed surface of a solid. Condensed Matter Physics, 21 (2), 23701: 1–9. doi: 10.5488/CMP.21.23701.
  14. Seneta M.Ya., Peleshchak R.M. (2017). Deformation potential of acoustic quasi-Rayleigh wave interacting with adsorbed atoms. Journal of Nano- and Electronic Physics, 9 (3), 03032. https://doi.org/10.21272/jnep.9(3).03032.
  15. Duplaa F., Renoirta M.-S., Gonona M., Smaginb N., Duquennoyb M., Marticc G., Erauwc J.-P. (2020). A lead-free non-ferroelectric piezoelectric glass-ceramic for high temperature surface acoustic wave devices. Journal of the European Ceramic Society, 40 (11), 3759-3765. https://doi.org/10.1016/j.jeurceramsoc.2020.01.051 
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.