logo logo


Assessing neurotoxicity risk through electroretinography with reduced light irritation intensity

НазваAssessing neurotoxicity risk through electroretinography with reduced light irritation intensity
Назва англійськоюAssessing neurotoxicity risk through electroretinography with reduced light irritation intensity
АвториPavlo Tymkiv, Mykhaylo Bachynskiy
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описAssessing neurotoxicity risk through electroretinography with reduced light irritation intensity / Pavlo Tymkiv, Mykhaylo Bachynskiy // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 111. — No 3. — P. 58–66.
Bibliographic description:Tymkiv P., Bachynskiy M. (2023) Assessing neurotoxicity risk through electroretinography with reduced light irritation intensity. Scientific Journal of TNTU (Tern.), vol 111, no 3, pp. 58–66.
УДК

53.05: 617.753

Ключові слова

Electroretinography, electroretinosignal, low intensity of light irritation, neurotoxicity, evaluation of risks.

The article is devoted to questions of the risk assessment of human neurotoxicity caused by the negative influence of free radicals of nanostructures, using electrophysiological methods of research – electroretinography with low intensity of light irritation. It has been established that the negative influence of toxins (chemical compounds of industrial and household purposes, nanomaterials as a source of free radicals) leads to changes in the parameters of electroretinosignal (ERS) in the early stages of detection of neurotoxicity. The use of advanced electroretinography (by decreasing the intensity of light irritation) and the use of a low intensity stimulation semiconductor source is substantiated. The ERS was obtained in the required range of values of light irritation, and morphological parameters were determined for further detection of ERS in admixture with noise, and for evaluating the characteristic change of the form of ERS under the influence of neurotoxicity.

ISSN:2522-4433
Перелік літератури
  1. Matyushko M. G., Myalovyczka O. A., Trejtyak V. S. ta in. Nevrologichni aspekty margancevoyi nejrotoksychnosti. Mizhnarodnyj nevrologichnyj zhurnal. Doneczk. 2010. Nо. 3. Р. 178–181.
  2. Gornostaj O. B. Rozvytok profesijnyx zaxvoryuvan v Ukrayini. Naukovyj visnyk NLTU Ukrayiny. 2013. Vy`p. 23.16. Р. 396–401.
  3. Lee S. Y., Son N. H., Bae H. W., Seong G. J., Kim C. Y. The role of pattern electroretinograms and optical coherence tomography angiography in the diagnosis of normal-tension glaucoma. Sci Rep. 2021 Jun 10; 11 (1):12257. Doi: 10.1038/s41598-021-91813-z. PMID: 34112913; PMCID: PMC8192937.
  4. Cvenkel B., Sustar M. & Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol 135, 17–28 (2017). https://doi.org/10.1007/s10633-017-9595-9.
  5. Granit R. Receptors and Sensory Perception. Yale University Press, New Haven, 1955.
  6. Granit R. Sensory Mechanism of the Retina. Oxford University Press, London, 1947.
  7. Gardner W. Introduction to random processes with application to signals and system. New Yourk: Macmillan publ. comp., 1986. 430 p.
  8. Tymkiv P. O., Leshhyshyn Yu. Z., Zabytivskyj V. P., Demchuk L. B. Zastosuvannya zakonu Vebera-Fexnera u kvantovij elektroretynografiyi. Visnyk KrNU imeni Myxajla Ostrogradskogo: Informacijni systemy i texnologiyi. Matematychne modelyuvannya. Kremenchuk. 2015. Nо. 5 (94). Р. 79–85.
  9. ISCEV Standard for full-field clinical electroretinography. Springer-Verlag. 2008. P. 9.
  10. Tymkiv P., Leshchyshyn Yu. Algorithm Reliability of Kalman Filter Coefficients Determination for Low-Intensity Electroretinosignal. CADSM 2019, February 26 – March 2, 2019, Polyana-Svalyava (Zakarpattya), Ukraine.
  11. Hecht S., Shlaer S., M. H. Pirenne. Energy, quanta, and vision. Laboratory of Biophysics, Columbia University, New York. March 30, 1942.
  12. Bauer R. An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmology, May 2000. P. 41–50.
  13. Finkelstein D., Gouras P., Hoff M. Human electroretinogram near the absolute threshold of vision. Investigative Ophthalmology, April 1968. P. 214–218.
  14. Tkachuk R., Yavorskyy B. ERG system for neurotoxicity risk assessment. Materialy XX Mizhnarodnoyi konferenciyi TCSET2010. Suchasni problemy radioelektroniky, telekomunikacij, kompyuternoyi inzheneriyi (23–27 lyutogo 2010. smt. Slavs`ke) m. L`viv, 2010. P. 131.
  15. Environmental Health Criteria 223. Neurotoxicity Risk Asessment For Human Health: Principles And Approaches [Elektron. resurs]. URL: http://www.inchem.org/documents/ehc/ehc/ehc223.htm.
References:
  1. Matyushko M. G., Myalovyczka O. A., Trejtyak V. S. ta in. Nevrologichni aspekty margancevoyi nejrotoksychnosti. Mizhnarodnyj nevrologichnyj zhurnal. Doneczk. 2010. Nо. 3. Р. 178–181.
  2. Gornostaj O. B. Rozvytok profesijnyx zaxvoryuvan v Ukrayini. Naukovyj visnyk NLTU Ukrayiny. 2013. Vy`p. 23.16. Р. 396–401.
  3. Lee S. Y., Son N. H., Bae H. W., Seong G. J., Kim C. Y. The role of pattern electroretinograms and optical coherence tomography angiography in the diagnosis of normal-tension glaucoma. Sci Rep. 2021 Jun 10; 11 (1):12257. Doi: 10.1038/s41598-021-91813-z. PMID: 34112913; PMCID: PMC8192937.
  4. Cvenkel B., Sustar M. & Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol 135, 17–28 (2017). https://doi.org/10.1007/s10633-017-9595-9.
  5. Granit R. Receptors and Sensory Perception. Yale University Press, New Haven, 1955.
  6. Granit R. Sensory Mechanism of the Retina. Oxford University Press, London, 1947.
  7. Gardner W. Introduction to random processes with application to signals and system. New Yourk: Macmillan publ. comp., 1986. 430 p.
  8. Tymkiv P. O., Leshhyshyn Yu. Z., Zabytivskyj V. P., Demchuk L. B. Zastosuvannya zakonu Vebera-Fexnera u kvantovij elektroretynografiyi. Visnyk KrNU imeni Myxajla Ostrogradskogo: Informacijni systemy i texnologiyi. Matematychne modelyuvannya. Kremenchuk. 2015. Nо. 5 (94). Р. 79–85.
  9. ISCEV Standard for full-field clinical electroretinography. Springer-Verlag. 2008. P. 9.
  10. Tymkiv P., Leshchyshyn Yu. Algorithm Reliability of Kalman Filter Coefficients Determination for Low-Intensity Electroretinosignal. CADSM 2019, February 26 – March 2, 2019, Polyana-Svalyava (Zakarpattya), Ukraine.
  11. Hecht S., Shlaer S., M. H. Pirenne. Energy, quanta, and vision. Laboratory of Biophysics, Columbia University, New York. March 30, 1942.
  12. Bauer R. An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmology, May 2000. P. 41–50.
  13. Finkelstein D., Gouras P., Hoff M. Human electroretinogram near the absolute threshold of vision. Investigative Ophthalmology, April 1968. P. 214–218.
  14. Tkachuk R., Yavorskyy B. ERG system for neurotoxicity risk assessment. Materialy XX Mizhnarodnoyi konferenciyi TCSET2010. Suchasni problemy radioelektroniky, telekomunikacij, kompyuternoyi inzheneriyi (23–27 lyutogo 2010. smt. Slavs`ke) m. L`viv, 2010. P. 131.
  15. Environmental Health Criteria 223. Neurotoxicity Risk Asessment For Human Health: Principles And Approaches [Elektron. resurs]. URL: http://www.inchem.org/documents/ehc/ehc/ehc223.htm.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.