logo logo


Determination of dynamic characteristics of the centrifuge shaft

НазваDetermination of dynamic characteristics of the centrifuge shaft
Назва англійськоюDetermination of dynamic characteristics of the centrifuge shaft
АвториIaroslav Lavrenko, Tetiana Sydora, Maksym Sushchenko
ПринадлежністьNational Technical University of Ukraine «Ihor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
Бібліографічний описDetermination of dynamic characteristics of the centrifuge shaft / Iaroslav Lavrenko, Tetiana Sydora, Maksym Sushchenko // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 112. — No 4. — P. 32–40.
Bibliographic description:Lavrenko Ia., Sydora T., Sushchenko M. (2023). Determination of dynamic characteristics of the centrifuge shaft. Scientific Journal of TNTU (Tern.), vol 112, no 4, pp. 32–40.
DOI: https://doi.org/10.33108/visnyk_tntu2023.04.032
УДК

539.3

Ключові слова

centrifuge, natural frequencies, natural forms, Campbell diagram, KISSsoft.

The paper presents the results of modeling the dynamic characteristics of the shaft of a laboratory centrifuge, which were compared with the results obtained analytically and experimentally. The obtained results showed the convergence of analytical and experimental data, in turn, the results obtained with the help of the KISSsoft software complex have overestimated values. The paper also provides determination of natural frequencies and forms of oscillations by the methods of the vibration theory.

ISSN:2522-4433
Перелік літератури
1. Fischer J., Strackeljan J. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints/ Technische mechanik, Band 26, Heft 2, 2006, p. 131–147.
2. Genta G. Dynamics of Rotating Systems/Springer New York, NY. URL: https://doi.org/10.1007/0-387-28687-X.
3. Guskov M., Sinou J.-J., Thouverez F. Multi-dimensional harmonic balance applied to rotor dynamics. Mechanics Research Communications. 35. 2008. P. 537–545.
4. Diken H. Non-linear vibration analysis and subharmonic whirl frequencies of the Jeffcott rotor model. Journal of Sound and Vibration. 2001. 243 (1). P. 117–125. Doi: 10.1006/jsvi.2000.3394.
5. Babenko A., Lavrenko Ia., Strackeljan J. Investigation of laboratory centrifuge motion as multibody system. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Politechnic Institute. 2013. No. 68. P. 186–194. [In Ukrainian].
6. Genta G. On the stability of rotating blade arrays. Journal of Sound and Vibration. 273. 2004. P. 805–836.
7. Harsha S. P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing. Chaos, Solitons and Fractals. 26 (1). 2005. P. 47–66.

8. Strackeljan J., Babenko A., Lavrenko Ia. Necessary conditions of stability moving parts of rotor centrifuge. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2014. No. 72. P. 18–23.

9. Harsha S. P. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. Journal of Sound and Vibration. 290. 2006. P. 65–100.
10. Ishida Y., Inoue T., Kagawa T., Ueda M. Nonlinear Analysis and Experiments on Torsional Vibration of a Rotor with a Centrifugal Pendulum Vibration Absorber. Journal of System Design and Dynamics. Vol. 2. No. 3. 2008.
11. Young T.H. et al. Dynamic stability of rotor-bearing systems subjected to random axial forces. Journal of Sound and Vibration. 305. 2007. P. 467–480.
12. Babenko A., Lavrenko Ia., Kurenkov N. Influence of gyroscopic effect on fluctuations of the centrifuge shaft/ Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2012. No. 65. P. 166–174. [In Ukrainian].
13. H. F. de Castro et al. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration. 317. 2008. P. 273–293.
14. Lee C.-W. Evolution of Frequency-Speed Diagram in Rotating Machinery. IUTAM Symposium on Emerging Trends in Rotor Dynamics, 2009.
15. Genta G. A fast model technique for the computation of the Campbell diagram of multi-degree-of-freedom rotors. Journal of Sound and Vibration. 1992. 155 (3). P. 385–402.
16. Rao J. S., Shiau T. N., Chang J. R. Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech. mach. Theory. Vol. 33. No. 6. 1998. P. 761–783.
17. Lavrenko Ia., Kravchenko V., Sydora T. Mechanical transmission design in the Kisssof software complex. Educational manual. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2023. 73 p. [In Ukrainian].
References:
1. Fischer J., Strackeljan J. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints/ Technische mechanik, Band 26, Heft 2, 2006, p. 131–147.
2. Genta G. Dynamics of Rotating Systems/Springer New York, NY. URL: https://doi.org/10.1007/0-387-28687-X.
3. Guskov M., Sinou J.-J., Thouverez F. Multi-dimensional harmonic balance applied to rotor dynamics. Mechanics Research Communications. 35. 2008. P. 537–545.
4. Diken H. Non-linear vibration analysis and subharmonic whirl frequencies of the Jeffcott rotor model. Journal of Sound and Vibration. 2001. 243 (1). P. 117–125. Doi: 10.1006/jsvi.2000.3394.
5. Babenko A., Lavrenko Ia., Strackeljan J. Investigation of laboratory centrifuge motion as multibody system. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Politechnic Institute. 2013. No. 68. P. 186–194. [In Ukrainian].
6. Genta G. On the stability of rotating blade arrays. Journal of Sound and Vibration. 273. 2004. P. 805–836.
7. Harsha S. P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing. Chaos, Solitons and Fractals. 26 (1). 2005. P. 47–66.

8. Strackeljan J., Babenko A., Lavrenko Ia. Necessary conditions of stability moving parts of rotor centrifuge. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2014. No. 72. P. 18–23.

9. Harsha S. P. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. Journal of Sound and Vibration. 290. 2006. P. 65–100.
10. Ishida Y., Inoue T., Kagawa T., Ueda M. Nonlinear Analysis and Experiments on Torsional Vibration of a Rotor with a Centrifugal Pendulum Vibration Absorber. Journal of System Design and Dynamics. Vol. 2. No. 3. 2008.
11. Young T.H. et al. Dynamic stability of rotor-bearing systems subjected to random axial forces. Journal of Sound and Vibration. 305. 2007. P. 467–480.
12. Babenko A., Lavrenko Ia., Kurenkov N. Influence of gyroscopic effect on fluctuations of the centrifuge shaft/ Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2012. No. 65. P. 166–174. [In Ukrainian].
13. H. F. de Castro et al. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration. 317. 2008. P. 273–293.
14. Lee C.-W. Evolution of Frequency-Speed Diagram in Rotating Machinery. IUTAM Symposium on Emerging Trends in Rotor Dynamics, 2009.
15. Genta G. A fast model technique for the computation of the Campbell diagram of multi-degree-of-freedom rotors. Journal of Sound and Vibration. 1992. 155 (3). P. 385–402.
16. Rao J. S., Shiau T. N., Chang J. R. Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech. mach. Theory. Vol. 33. No. 6. 1998. P. 761–783.
17. Lavrenko Ia., Kravchenko V., Sydora T. Mechanical transmission design in the Kisssof software complex. Educational manual. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2023. 73 p. [In Ukrainian].
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.