logo logo


Substantiation of the protection system’s technical outline for the aerospace objects

НазваSubstantiation of the protection system’s technical outline for the aerospace objects
Назва англійськоюSubstantiation of the protection system’s technical outline for the aerospace objects
АвториOleksandr Lobunko, Oleksandr Iskra
ПринадлежністьNational Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
Бібліографічний описSubstantiation of the protection system’s technical outline for the aerospace objects / Oleksandr Lobunko, Oleksandr Iskra // Scientific Journal of TNTU. — Tern.: TNTU, 2023. — Vol 112. — No 4. — P. 102–114.
Bibliographic description:Lobunko O., Iskra O. (2023). Substantiation of the protection system’s technical outline for the aerospace objects. Scientific Journal of TNTU (Tern.), vol 112, no 4, pp. 102–114.
DOI: https://doi.org/10.33108/visnyk_tntu2023.04.102
УДК

536.24

Ключові слова

Environment factors, thermal flow, load, protection system, insulation, isolation.

During their operational time, spacecraft are exposed to numerous factors, which are specific to the space environment. Spacecraft designing is a complex scientific and technical problem, which solution necessarily requires taking into account the possible effect of these factors on the structural elements and systems of the vehicle, including protective means in its concept and ensuring its functioning in the expected operational conditions. This paper presents a review of the main space environment factors, which affects the spacecraft, defines global trends in the protection systems’ development and substantiation of the perspective protection system’s technical configuration.

ISSN:2522-4433
Перелік літератури
1. Black R. J., Costa J. M., Zarnescu L., Hackney D. A., Moslehi B., & Peters K. J. (2016). Errata: Fiber-optic temperature profiling for thermal protection system heat shields. Optical Engineering. 55 (11). URL: http:// doi.org/10.1117/1.OE.55.11.119802.
2. Brociek R., Hetmaniok E., & Słota D. (2022). Reconstruction of aerothermal heating for the thermal protection system of a reusable launch vehicle. Applied Thermal Engineering. 219. URL: https://doi.org/ 10.1016/j.applthermaleng.2022.119405.
3. Hilorme T., Nakashydze L., Mazyrik S., Gabrinets V., Kolbunov V., & Gomilko I. (2022). Substantiation for the selection of parameters for ensuring electro-thermal protection of solar batteries in spacecraft power systems. Eastern-European Journal of Enterprise Technologies. 3 (8 (117)). Р. 17–24. URL: https://doi.org/ 10. 15587/1729-4061.2022.258480.
4. Ma S., Zhang S., Wu J., Zhang Y., Chu W., & Wang Q. (2023). Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep – Downhole – Environment Exploration. Energies. 16. 1231. URL: https://doi.org/10.3390/en16031231.
5. Piacquadio S., Pridöhl D., Henkel N., Bergström R., Zamprotta A., Dafnis A., & Schröder K.-U. (2023). Comprehensive Comparison of Different Integrated Thermal Protection Systems with Ablative Materials for Load-Bearing Components of Reusable Launch Vehicles. Aerospace. 10, 319. URL: https://doi.org/10. 3390/aerospace10030319.
6. Xu Q., Li S., & Meng Y. (2021). Optimization and Re-Design of Integrated Thermal Protection Systems Considering Thermo-Mechanical Performance. Applied Sciences. 11. URL: https://doi.org/10.3390/ app11156916.
7. Blachowicz T., Ehrmann A. (2021). Shielding of Cosmic Radiation by Fibrous Materials. Fibers. 9. 60. URL: https://doi.org/10.3390/fib9100060.
8. Chowdhury R. P., Stegeman L., Padilla R. F. S., Lund M. L., Madzunkov S., Fry D., & Bahadori A. A. (2021). Space radiation electrostatic shielding scaling laws: Beam-like and isotropic angular distributions. Journal of Applied Physics. 130. URL: https://doi.org/10.1063/5.0046599.
9. Copeland K., Friedberg W. (2021). Ionizing Radiation and Radiation Safety in Aerospace Environments. Civil Aerospace Medical Institute FAA.
10. Hands A. D. P., Ryden K. A., Meredith N. P., Glauert S. A., & Horne R. B. (2018). Radiation effects on satellites during extreme space weather events. Space Weather. 16. Р. 1216–1226. URL: https://doi.org/10. 1029/2018SW001913.
11. Loffredo F., Vardaci E., Bianco D., Di Nitto A., & Quarto M. (2023). Radioprotection for Astronauts’ Missions: Numerical Results on the Nomex Shielding Effectiveness. Life. 13. 790. URL: https://doi.org/ 10.3390/life13030790.
12. Naito M., Kodaira S., Ogawara R., Tobita K., Someya Y., Kusumoto T., Kusano H., Kitamura H., Koike M., Uchihori Y., Yamanaka M., Mikoshiba R., Endo T., Kiyono N., Hagiwara Y., Kodama H., Matsuo S., Takami Y., Sato T., & Orimo S. (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26. Р. 69–76. URL: https://doi.org/10. 1016/j.lssr.2020.05.001
13. Zheng Y., Ganushkina N. Y., Jiggens P., Jun I., Meier M., Minow J. I., O’Brien T. P., Pitchford D., Shprits Y., Tobiska W. K., Xapsos M. A., Guild T. B., Mazur J. E., & Kuznetsova M. M. (2019). Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models. Space Weather. 17 (10). Р. 1384–1403. URL: https://doi.org/ 10.1029/2018SW002042.
14. Ferrone K., Willis C., Guan F., Ma J., Peterson L., & Kry S. (2023). A Review of Magnetic Shielding Technology for Space Radiation. Radiation. 3. 46–57. URL: https://doi.org/10.3390/radiation3010005.
15. Christiansen E. L. (2009). Handbook for Designing MMOD Protection. Astromaterials Research and Exploration Science Directorate, Human Exploration Science Office, NASA Johnson Space Center.
16. Rodmann J., Miller A., Traud M., Bunte K. D., & Millinger M. (2021). Micrometeoroid Impact Risk Assessment for Interplanetary Missions. 8th European Conference on Space Debris, ESA Space Debris Office.
17. Fortescue P. W., Swinerd G., Stark . (2011). Spacecraft systems engineering (4th ed.). John Wiley & Sons, Ltd.
18. Karpinos B. S., Korovin A. V., Lobunko O. P., Vedishcheva M.Y. Operational damage of aircraft turbojet twin-circuit engines with afterburners. Journal Vesnik dyvtomobilnosti. Zaporizhzhya. 2014. Р. 18–24.
19. Lobunko O. P., Iskra O. O. Substantiation of the protection system’s configuration for the reusable spacecraft. III International Scientific and Practical Conference science in the environment of rapid changes: materials of the International Scientific and Practical Conference, Belgium, Brussel, 16–18 August 2023. P. 189–194. ISBN 978-2-8037-1533-6. URL: https://archive.interconf.center/index. php/conference-proceeding/article/view/4218.
20. Lobunko O., Іskra О. Mathematical Modeling of the Thermal Conditions of Aerospace Products’ Protection Systems. Mizhnarodna naukovo-tekhnichna konferentsiia «Datchyky, prylady ta systemy – 2023»: materialy Mizhnar. nauk.-tekhn. konf., Ukraina, Cherkasy, 12–14 veresnia 2023. Р. 8–10. URL: https://er.chdtu.edu.ua/bitstream/ChSTU/4561/1/%D0%97%D0%B1%D1%96%D1%80%D0%BD%D0%B8%D0%BA%20%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D1%96%D0%B0%D0%BB%D1%96%D0%B2%20

 

References:
1. Black R. J., Costa J. M., Zarnescu L., Hackney D. A., Moslehi B., & Peters K. J. (2016). Errata: Fiber-optic temperature profiling for thermal protection system heat shields. Optical Engineering. 55 (11). URL: http:// doi.org/10.1117/1.OE.55.11.119802.
2. Brociek R., Hetmaniok E., & Słota D. (2022). Reconstruction of aerothermal heating for the thermal protection system of a reusable launch vehicle. Applied Thermal Engineering. 219. URL: https://doi.org/ 10.1016/j.applthermaleng.2022.119405.
3. Hilorme T., Nakashydze L., Mazyrik S., Gabrinets V., Kolbunov V., & Gomilko I. (2022). Substantiation for the selection of parameters for ensuring electro-thermal protection of solar batteries in spacecraft power systems. Eastern-European Journal of Enterprise Technologies. 3 (8 (117)). Р. 17–24. URL: https://doi.org/ 10. 15587/1729-4061.2022.258480.
4. Ma S., Zhang S., Wu J., Zhang Y., Chu W., & Wang Q. (2023). Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep – Downhole – Environment Exploration. Energies. 16. 1231. URL: https://doi.org/10.3390/en16031231.
5. Piacquadio S., Pridöhl D., Henkel N., Bergström R., Zamprotta A., Dafnis A., & Schröder K.-U. (2023). Comprehensive Comparison of Different Integrated Thermal Protection Systems with Ablative Materials for Load-Bearing Components of Reusable Launch Vehicles. Aerospace. 10, 319. URL: https://doi.org/10. 3390/aerospace10030319.
6. Xu Q., Li S., & Meng Y. (2021). Optimization and Re-Design of Integrated Thermal Protection Systems Considering Thermo-Mechanical Performance. Applied Sciences. 11. URL: https://doi.org/10.3390/ app11156916.
7. Blachowicz T., Ehrmann A. (2021). Shielding of Cosmic Radiation by Fibrous Materials. Fibers. 9. 60. URL: https://doi.org/10.3390/fib9100060.
8. Chowdhury R. P., Stegeman L., Padilla R. F. S., Lund M. L., Madzunkov S., Fry D., & Bahadori A. A. (2021). Space radiation electrostatic shielding scaling laws: Beam-like and isotropic angular distributions. Journal of Applied Physics. 130. URL: https://doi.org/10.1063/5.0046599.
9. Copeland K., Friedberg W. (2021). Ionizing Radiation and Radiation Safety in Aerospace Environments. Civil Aerospace Medical Institute FAA.
10. Hands A. D. P., Ryden K. A., Meredith N. P., Glauert S. A., & Horne R. B. (2018). Radiation effects on satellites during extreme space weather events. Space Weather. 16. Р. 1216–1226. URL: https://doi.org/10. 1029/2018SW001913.
11. Loffredo F., Vardaci E., Bianco D., Di Nitto A., & Quarto M. (2023). Radioprotection for Astronauts’ Missions: Numerical Results on the Nomex Shielding Effectiveness. Life. 13. 790. URL: https://doi.org/ 10.3390/life13030790.
12. Naito M., Kodaira S., Ogawara R., Tobita K., Someya Y., Kusumoto T., Kusano H., Kitamura H., Koike M., Uchihori Y., Yamanaka M., Mikoshiba R., Endo T., Kiyono N., Hagiwara Y., Kodama H., Matsuo S., Takami Y., Sato T., & Orimo S. (2020). Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 26. Р. 69–76. URL: https://doi.org/10. 1016/j.lssr.2020.05.001
13. Zheng Y., Ganushkina N. Y., Jiggens P., Jun I., Meier M., Minow J. I., O’Brien T. P., Pitchford D., Shprits Y., Tobiska W. K., Xapsos M. A., Guild T. B., Mazur J. E., & Kuznetsova M. M. (2019). Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models. Space Weather. 17 (10). Р. 1384–1403. URL: https://doi.org/ 10.1029/2018SW002042.
14. Ferrone K., Willis C., Guan F., Ma J., Peterson L., & Kry S. (2023). A Review of Magnetic Shielding Technology for Space Radiation. Radiation. 3. 46–57. URL: https://doi.org/10.3390/radiation3010005.
15. Christiansen E. L. (2009). Handbook for Designing MMOD Protection. Astromaterials Research and Exploration Science Directorate, Human Exploration Science Office, NASA Johnson Space Center.
16. Rodmann J., Miller A., Traud M., Bunte K. D., & Millinger M. (2021). Micrometeoroid Impact Risk Assessment for Interplanetary Missions. 8th European Conference on Space Debris, ESA Space Debris Office.
17. Fortescue P. W., Swinerd G., Stark . (2011). Spacecraft systems engineering (4th ed.). John Wiley & Sons, Ltd.
18. Karpinos B. S., Korovin A. V., Lobunko O. P., Vedishcheva M.Y. Operational damage of aircraft turbojet twin-circuit engines with afterburners. Journal Vesnik dyvtomobilnosti. Zaporizhzhya. 2014. Р. 18–24.
19. Lobunko O. P., Iskra O. O. Substantiation of the protection system’s configuration for the reusable spacecraft. III International Scientific and Practical Conference science in the environment of rapid changes: materials of the International Scientific and Practical Conference, Belgium, Brussel, 16–18 August 2023. P. 189–194. ISBN 978-2-8037-1533-6. URL: https://archive.interconf.center/index. php/conference-proceeding/article/view/4218.
20. Lobunko O., Іskra О. Mathematical Modeling of the Thermal Conditions of Aerospace Products’ Protection Systems. Mizhnarodna naukovo-tekhnichna konferentsiia «Datchyky, prylady ta systemy – 2023»: materialy Mizhnar. nauk.-tekhn. konf., Ukraina, Cherkasy, 12–14 veresnia 2023. Р. 8–10. URL: https://er.chdtu.edu.ua/bitstream/ChSTU/4561/1/%D0%97%D0%B1%D1%96%D1%80%D0%BD%D0%B8%D0%BA%20%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D1%96%D0%B0%D0%BB%D1%96%D0%B2%20

 

Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.