logo logo


Design of the endoskeleton of a biocontrolled hand prosthesis

НазваDesign of the endoskeleton of a biocontrolled hand prosthesis
Назва англійськоюDesign of the endoskeleton of a biocontrolled hand prosthesis
АвториVasil Dozorskyi, Leonid Dediv, Serhii Kovalyk, Oksana Dozorska, Iryna Dediv
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описDesign of the endoskeleton of a biocontrolled hand prosthesis / Vasil Dozorskyi, Leonid Dediv, Serhii Kovalyk, Oksana Dozorska, Iryna Dediv // Scientific Journal of TNTU. — Tern.: TNTU, 2024. — Vol 115. — No 3. — P. 100–111.
Bibliographic description:Dozorskyi V., Dediv L., Kovalyk S., Dozorska O., Dediv I. (2024) Design of the endoskeleton of a biocontrolled hand prosthesis. Scientific Journal of TNTU (Tern.), vol 115, no 3, pp. 100–111.
DOI: https://doi.org/10.33108/visnyk_tntu2024.03.100
УДК

612.741.1

Ключові слова

prosthesis, endoskeleton, bioprosthetics, hinged connection.

The article analyzes the constructions of biocontrolled prostheses that are common today on the market of prosthetic equipment, in particular the i-Limb, «Michelangelo hand» and Bebionic prostheses. It is shown that these constructions use hollow shell models of the phalanges of the fingers and the palm, which together form the exoskeleton of the prosthesis construction. This type of design is characterized by the complexity of manufacturing, and accordingly, the cost, and the irrational use of volume, since traction elements, gear elements or other elements are placed inside these hollow elements, which ensure the transmission of forces when performing bending movements of such fingers. The article proposes the use of the endoskeleton as a support base for fixing electric drives and control elements. At the same time, the structure is a group of hingedly connected elements and rods for the transmission of forces, in which simultaneous bending is ensured in all hinged joints, and the form of the performed movements is close to natural. At the same time, the volume of the finger elements is more rationally used in the proposed design, as it becomes possible to fix out external nozzles of elastomeric materials on the structure rod, which will repeat the shape of real fingers, will be soft for reliable holding of objects when performing grip movements. At the same time, it becomes possible to install sensors in such elastomeric elements to provide tactile sensations. As a result of the research, 3-D models of all prosthesis endoskeleton elements were developed and they were manufactured by 3-D printing. At the prototyping stage, bipolar stepper motors controlled by the Arduino Uno module were used as electric drives to evaluate the trajectories of the performed movements. It is shown that it becomes possible to increase the functionality due to the installation of sensors to provide tactile sensations It was established that the number of performed movements is practically the same as that of analogues, and the cost of the proposed design is much lower. At the same time, reliability is higher due to the use of a much smaller number of structural elements and their connections.

ISSN:2522-4433
Перелік літератури
  1. Available at: https://zakon.rada.gov.ua/laws/main/518-2014-%D0%BF.
  2. Available at: https://en.wikipedia.org/wiki/Prosthesis
  3. Francesco V. Tenore and R. Jacob Vogelstein. Revolutionizing Prosthetics: Devices for Neural Integration. - JOHNS HOPKINS APL TECHNICAL DIGEST, 2011, vol. 30, no. 3, pp. 230–239.
  4. Chernyshov A .A., Mustetsov N. P. Alhorytm keruvannya funktsionalʹnym protezom ruky. Systemy obrobky informatsiyi, 2014, no. 6 (122), pp. 167–172. (In Ukrainian).
  5. Popadyukha Yu. Osoblyvosti bionichnykh proteziv verkhnikh kintsivok. 2017. Available at: http://esnuir. eenu.edu.ua/bitstream/123456789/13204/1/Yuriy%20Popadiukha.pdf. (In Ukrainian).
  6. Popadyukha Yu. A. Suchasni komp'yuteryzovani kompleksy ta systemy u tekhnolohiyakh fizychnoyi reabilitatsiyi. Kyiv, Tsentr uchbovoyi literatury, 2018. 300 p. (In Ukrainian).
  7. Popadyukha YU. A. Suchasni robotyzovani kompleksy, systemy ta prystroyi u reabilitatsiynykh tekhnolohiyakh: Navch. posib. Kyiv, Tsentr uchbovoyi literatury, 2017, 324 p. (In Ukrainian).
  8. Available at: https://www.ottobock.eu.
  9. Ngo T. D. [et al.]. Additive manufacturing (3D printing): A review of materials, meth- ods, applications and challenges. Composites Part B: Engineering, 2018. Dec. (143), pр. 172–196.
  10. Campbell I. [et. al]. Wohlers Report. 3D Printing and Additive Manufacturing. Global State of the Industry. Wohlers Associates. 380 p.
  11. Birbara N. S., Otton J. M., Pather N. 3D Modelling and Printing Tech- nology to Produce Patient-Specific 3D Models. Heart, Lung and Circulation, 2019, no. 2 (28), pp. 302–313.
  12. Chen J. H., Gariel M. A Roadmap from Idea to Implementation – 3D Printing for Pre-Surgical Applications. San-Francisco. 3DHEALS, 2015, pр. 1–80.
  13. Steely M. E. [et al.]. Poster 160: Custom-made 3D Printed Finger Prosthetics with Haptic Feedback. Elsevier, 2018. 54 p.
  14. Hull C. W., Calif A. Apparatus for production of three-dimensional objects by stereolithography: US Patent US : 4575330 A. 1986.
  15. Gebhardt A., Hötter J.-S. Additive Manufacturing: 3D Printing for Prototyping and Manufacturing. Munich: Hanser Publishers, 2016. 591 p.
  16. Jacob Segil. Handbook of Biomechatronics. Academic Press is an imprint of Elsevier. 2019, Elsevier Inc., 603 p.
  17. Nykytyuk V,, Dozorskyi V., Dozorska O. Detection of biomedical signals disruption using a sliding window. Scientific jornal of the Ternopil National Technical University, 2018, vol. 91, no. 3, pp. 125–133.
  18. Dozorskyi V., Dediv I., Sverstiuk S., Nykytyuk V., Karnaukhov A. The Method of Commands Identification to Voice Control of the Electric Wheelchair. Proceedings of the 1st International Workshop on Computer Information Technologies in Industry 4.0 (CITI 2023). Ternopil, Ukraine, June 14–16, 2023. pp.233–240.
  19. Savchuk A. V., Popov A. O. Metody ta zasoby intelektualʹnoho upravlinnya protezamy verkhnikh kintsivok. Electron Commun. Biomedychni prylady ta systemy, 2017, vol. 22, no. 2, pp. 33–42. (In Ukrainian).
References:
  1. Available at: https://zakon.rada.gov.ua/laws/main/518-2014-%D0%BF.
  2. Available at: https://en.wikipedia.org/wiki/Prosthesis
  3. Francesco V. Tenore and R. Jacob Vogelstein. Revolutionizing Prosthetics: Devices for Neural Integration. - JOHNS HOPKINS APL TECHNICAL DIGEST, 2011, vol. 30, no. 3, pp. 230–239.
  4. Chernyshov A .A., Mustetsov N. P. Alhorytm keruvannya funktsionalʹnym protezom ruky. Systemy obrobky informatsiyi, 2014, no. 6 (122), pp. 167–172. (In Ukrainian).
  5. Popadyukha Yu. Osoblyvosti bionichnykh proteziv verkhnikh kintsivok. 2017. Available at: http://esnuir. eenu.edu.ua/bitstream/123456789/13204/1/Yuriy%20Popadiukha.pdf. (In Ukrainian).
  6. Popadyukha Yu. A. Suchasni komp'yuteryzovani kompleksy ta systemy u tekhnolohiyakh fizychnoyi reabilitatsiyi. Kyiv, Tsentr uchbovoyi literatury, 2018. 300 p. (In Ukrainian).
  7. Popadyukha YU. A. Suchasni robotyzovani kompleksy, systemy ta prystroyi u reabilitatsiynykh tekhnolohiyakh: Navch. posib. Kyiv, Tsentr uchbovoyi literatury, 2017, 324 p. (In Ukrainian).
  8. Available at: https://www.ottobock.eu.
  9. Ngo T. D. [et al.]. Additive manufacturing (3D printing): A review of materials, meth- ods, applications and challenges. Composites Part B: Engineering, 2018. Dec. (143), pр. 172–196.
  10. Campbell I. [et. al]. Wohlers Report. 3D Printing and Additive Manufacturing. Global State of the Industry. Wohlers Associates. 380 p.
  11. Birbara N. S., Otton J. M., Pather N. 3D Modelling and Printing Tech- nology to Produce Patient-Specific 3D Models. Heart, Lung and Circulation, 2019, no. 2 (28), pp. 302–313.
  12. Chen J. H., Gariel M. A Roadmap from Idea to Implementation – 3D Printing for Pre-Surgical Applications. San-Francisco. 3DHEALS, 2015, pр. 1–80.
  13. Steely M. E. [et al.]. Poster 160: Custom-made 3D Printed Finger Prosthetics with Haptic Feedback. Elsevier, 2018. 54 p.
  14. Hull C. W., Calif A. Apparatus for production of three-dimensional objects by stereolithography: US Patent US : 4575330 A. 1986.
  15. Gebhardt A., Hötter J.-S. Additive Manufacturing: 3D Printing for Prototyping and Manufacturing. Munich: Hanser Publishers, 2016. 591 p.
  16. Jacob Segil. Handbook of Biomechatronics. Academic Press is an imprint of Elsevier. 2019, Elsevier Inc., 603 p.
  17. Nykytyuk V,, Dozorskyi V., Dozorska O. Detection of biomedical signals disruption using a sliding window. Scientific jornal of the Ternopil National Technical University, 2018, vol. 91, no. 3, pp. 125–133.
  18. Dozorskyi V., Dediv I., Sverstiuk S., Nykytyuk V., Karnaukhov A. The Method of Commands Identification to Voice Control of the Electric Wheelchair. Proceedings of the 1st International Workshop on Computer Information Technologies in Industry 4.0 (CITI 2023). Ternopil, Ukraine, June 14–16, 2023. pp.233–240.
  19. Savchuk A. V., Popov A. O. Metody ta zasoby intelektualʹnoho upravlinnya protezamy verkhnikh kintsivok. Electron Commun. Biomedychni prylady ta systemy, 2017, vol. 22, no. 2, pp. 33–42. (In Ukrainian).
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.