logo logo


Development of highly productive technological schemes for the use of agrodrones for plant protection

НазваDevelopment of highly productive technological schemes for the use of agrodrones for plant protection
Назва англійськоюDevelopment of highly productive technological schemes for the use of agrodrones for plant protection
АвториHanna Tson, Taras Dovbush, Viktoriia Martyniuk, Nadia Khomyk, Mykola Stashkiv, Anatoliy Dovbush
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описDevelopment of highly productive technological schemes for the use of agrodrones for plant protection / Hanna Tson, Taras Dovbush, Viktoriia Martyniuk, Nadia Khomyk, Mykola Stashkiv , Anatoliy Dovbush // Scientific Journal of TNTU. — Tern.: TNTU, 2025. — Vol 118. — No 2. — P. 66–78.
Bibliographic description:Tson H., Dovbush T., Martyniuk V., Khomyk N., Stashkiv M., Dovbush A. (2025) Development of highly productive technological schemes for the use of agrodrones for plant protection. Scientific Journal of TNTU (Tern.), vol 118, no 2, pp. 66–78.
УДК

631.5+632.9

Ключові слова

agricultural drone, mobile charging station, spraying, productivity, technological scheme of drone operation, agricultural plants, pesticides, drone speed, shift time, spraying width.

In agricultural production, to obtain high yields, reliable protection of cultivated plants is necessary, the crops of which are affected by various harmful organisms. The most effective in combating pests of agricultural plants is the chemical method, which, when successfully applied, provides high cost-effectiveness. To reduce the toxic impact on cultivated plants and the environment, the use of agricultural drone is promising due to their advantages over mobile ground sprayers. Agricultural drone do not compact the soil, do not damage agricultural crops, are extremely maneuverable, can work on fields of various configurations, are able to spray immediately after precipitation, can carry out local or point spraying, and provide accurate dosing of chemicals. They are characterized by high productivity and lower energy consumption. The implementation of the technological process by an agricultural drone was analyzed without taking into account the size of the field, the sown crop, the relief of the field, the type of agricultural drone, etc. As a result, the active, i.e. useful work performed by the drone, namely the technological process of spraying the drug, has been clearly delimited. The auxiliary actions necessary for the implementation of the technological process of spraying have been established: replacement (charging) of batteries, filling the tank with chemical liquid, take-off and landing, approach to the field boundary, U-turns when switching to another processing lane. A universal method for calculating the effective productivity of agricultural drones during the cultivation of agricultural crops has been proposed, which involves the analysis of each component of the technological process of applying pesticides by agricultural drones. Technological schemes have been proposed that provide a partial reduction in unproductive operations, increasing the productivity of agricultural drones, provided that the material support for the implementation of the technological process increases for each subsequent technological scheme. The use of agricultural drones-sprayers provides high productivity, which makes it possible to process crops in a short time, protecting them from diseases, pests and weeds.

ISSN:2522-4433
Перелік літератури
  1. Hafeez A., Husain M. A., Singh S. P., Chauhan A., Khan M. T., Kumar N., Chauhan A., Soni S. K. (2023) Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information Processing in Agriculture, vol. 10, iss. 2, рр. 192–203. Available at: https://doi.org/10.1016/j.inpa. 2022.02.002.
  2. Canicattì M., Vallone M. (2024) Drones in vegetable crops: A systematic literature review. Smart Agricultural Technology, vol. 7, 100396. Available at: https://doi.org/10.1016/j.atech.2024.100396.
  3. Rejeb A., Abdollahi A., Rejeb K., Treiblmaier H. (2022) Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, vol. 198, 107017. Available at: https://doi.org/10.1016/ j.compag.2022.107017.
  4. Ayamga M., Akaba S., Nyaaba A. (2021) Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, vol. 167, 120677, Available at: https://doi.org/10.1016/j.techfore. 2021.120677.
  5. Guebsi R., Mami S. & Chokmani K. (2024) Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones(11), 686. Available at: https://doi.org/10.3390/ drones8110686.
  6. García-Munguía A., Guerra-Ávila P. L., Islas-Ojeda E., Flores-Sánchez J. L., Vázquez-Martínez O., García-Munguía A. M. & García-Munguía O. (2024) A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones8(11), 674. Available at: https://doi.org/10.3390/drones 8110674.
  7. Ahirwar S., Swarnkar R., Srinivas B., Namwade G. (2019) Application of Drone in Agriculture. International Journal of Current Microbiology and Applied Sciences. 8. 2500–2505. Available at: 10.20546/ijcmas.2019.801.264.
  8. Souvanhnakhoomman S. (2021) Review on Application of Drone in Spraying Pesticides and Fertilizers. International Journal of Engineering Research and Technology, 10 (11). Available at: https://doi.org/10.175 77/IJERTV10IS110034.
  9. Raj M., Harshini N. B., Gupta S., Atiquzzaman M., Rawlley O., Goel L. (2024) Leveraging precision agriculture techniques using UAVs and emerging disruptive technologies. Energy Nexus, vol. 14, 100300. Available at: https://doi.org/10.1016/j.nexus.2024.100300.
  10. Gaadhe S., Dipesh C., Mehta T., Chavda S., Gojiya K.,  Bandhiya R. (2025) A comparative study of drone spraying and conventional spraying for precision agriculture. Plant Archives. 25. 771–778. Available at: 10.51470/PLANTARCHIVES.2025.SP.ICTPAIRS-111.
  11. Shanmugam P. S., Srinivasan T., Baskaran V., Suganthi A., Vinothkumar B., Arulkumar G., Backiyaraj S., Chinnadurai S., Somasundaram A., Sathiah N., Muthukrishnan N., Krishnamoorthy S. V., Prabakar K., Douresamy S., Johnson Edward Thangaraj Y. S., Pazhanivelan S., Ragunath K. P., Kumaraperumal R., Jeyarani S., Kavitha R., Mohankumar A. P. (2024) Comparative analysis of unmanned aerial vehicle and conventional spray systems for the maize fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera; Noctuidae) management. Plant Protect. Sci., 60( 2): 181–192. Doi: 10.17221/96/2023-PPS.
  12. Jeevan N., Surla K., Yerradoddi S., Nunavath S. (2024) Advancements in drone technology for weed management: A comprehensive review. International Journal of Advanced Biochemistry Research. 8. 22–27. Available at: 10.33545/26174693.2024.v8.i9a.2058.
  13. Meesaragandla, Srija & Jagtap, Megha & Khatri, Narendra & Madan, Hakka & Vadduri, Aditya. (2024) Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review. Results in Engineering. 21. 101870. Available at: 10.1016/j.rineng.2024.101870.
  14. Raj M., Harshini N. B., Gupta S., Atiquzzaman M., Rawlley O., Goel L. (2024) Leveraging precision agriculture techniques using UAVs and emerging disruptive technologies. Energy Nexus, vol. 14, 100300. Available at: https://doi.org/10.1016/j.nexus.2024.100300.
  15. Gaadhe S., Dipesh C., Mehta T., Chavda S., Gojiya K.,  Bandhiya R. (2025) A comparative study of drone spraying and conventional spraying for precision agriculture. Plant Archives. 25. 771–778. Available at: 10.51470/PLANTARCHIVES.2025.SP.ICTPAIRS-111.
  16. Shanmugam P. S., Srinivasan T., Baskaran V., Suganthi A., Vinothkumar B., Arulkumar G., Backiyaraj S., Chinnadurai S., Somasundaram A., Sathiah N., Muthukrishnan N., Krishnamoorthy S. V., Prabakar K., Douresamy S., Johnson Edward Thangaraj Y. S., Pazhanivelan S., Ragunath K. P., Kumaraperumal R., Jeyarani S., Kavitha R., Mohankumar A. P. (2024) Comparative analysis of unmanned aerial vehicle and conventional spray systems for the maize fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera; Noctuidae) management. Plant Protect. Sci., 60( 2): 181–192. Doi: 10.17221/96/2023-PPS.
  17. Jeevan N., Surla K., Yerradoddi S., Nunavath S. (2024) Advancements in drone technology for weed management: A comprehensive review. International Journal of Advanced Biochemistry Research. 8. 22–27. Available at: 10.33545/26174693.2024.v8.i9a.2058.
  18. Meesaragandla, Srija & Jagtap, Megha & Khatri, Narendra & Madan, Hakka & Vadduri, Aditya. (2024) Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review. Results in Engineering. 21. 101870. Available at: 10.1016/j.rineng.2024.101870.
  19. Gulak M. A. (2024). Implementation of Drone for Spraying Herbicide and Pesticide. Available at: 10.5281/zenodo.13337525.
  20. Martyniuk V., Khoma V., Matskiv T., Yunko K., Gnatyshyna L., Stoliar O. & Faggio C. (2023) Combined effect of microplastic, salinomycin and heating on Unio tumidus. Environmental toxicology and pharmacology, 98, 104068. Available at: https://doi.org/10.1016/j.etap.2023.104068.
  21. Martyniuk V. V. (2022) Accumulation of microplastics in the bivalve mollusc Unio tumidus under experimental and field exposures. Studia Biologica, 16 (4): 33–44. Available at: https://doi.org/10.30970/ sbi.1604.694.
  22. Musthaq Z., Baran M. F., Demir C., Saeed S., Islam M. & Siddiqui A. (2024). Role of sprayers drone in sustainable agriculture. Available at: 10.5281/zenodo.10841204.
  23. Shahrooz M., Talaeizadeh A. and Alasty A. (2020) Agricultural Spraying Drones: Advantages and Disadvantages, 2020 Virtual Symposium in Plant Omics Sciences (OMICAS), Bogotá, Colombia, pp. 1–5. Doi: 10.1109/OMICAS52284.2020.9535527.
  24. Castaldo, João. (2023). Revolutionizing agriculture from the skies: exploring the potential of spraying drones in precision farming. Cadernos de Ciência & Tecnologia, 40, 2023. 10.35977/0104-1096.cct2023.v40.27284.
  25. Pidgurskyi M., Stashkiv M., Pidgurskyi I., Oleksyuk V., Pidluzhnyi O., Bykiv D., Borys I., Bulaienko R., Stashkiv V., Mushak A. (2024) Methodology of experimental and analytical research of technical systems. Scientific Journal of TNTU (Tern.), vol 116, no 4, pp. 50–58.
  26. Menon B. K., Deshpande T., Pal A., Kothandaraman S. (2025) Critical regions identification and coverage using optimal drone flight path planning for precision agriculture. Results in Engineering, vol. 25, 104081. Available at: https://doi.org/10.1016/j.rineng.2025.104081.
  27. Andrii Babii, Taras Dovbush, Nadiia Khomuk, Anatolii Dovbush, Anna Tson, Vasyl Oleksyuk (2022) Mathematical model of a loaded supporting frame of a solid fertilizers distributor. Procedia Structural Integrity, no. 36, рр. 203–210. Science Direct. Available at: https://doi.org/10.1016/j.prostr.2022.01.025.
  28. Babii A., Levytskyi B., Dovbush T., Babii M., Khomuk N., Dovbush A., Valiashek V. (2024) Mathematical model of sprayer tank loading. Procedia Structural Integrity, no. 59, рр. 609–616. Available at: https://doi.org/10.1016/j.prostr.2024.04.086.
  29. Hevko R., Stashkiv M., Lyashuk O., Vovk Y., Oleksyuk V., Tson O., Bortnyk I. (2021) Investigation of internal efforts in the components of the crop sprayer boom section. Journal of Achievements in Materials and Manufacturing Engineering, vol. 105, iss. 1, 33–41. Doi: 10.5604/01.3001.0014.8743.
  30. Andreykiv О., Babii A., Dolinska I., Yadzhak N., Babii M. Residual lifetime prediction of field sprayer booms under the action of manoeuvre loading and corrosive environment. Procedia Structural Integrity, vol. 36, pp.  36–42. Available at: https://doi.org/10.1016/j.prostr.2021.12.080.
  31. Trappey Amy J. C., Lin Ging-Bin, Chen Hong-Kai, Chen Ming-Chi (2023) A comprehensive analysis of global patent landscape for recent R&D in agricultural drone technologies. World Patent Information, vol. 74, 102216. Available at: https://doi.org/10.1016/j.wpi.2023.102216.
  32. Loukatos D., Templalexis C., Lentzou D., Xanthopoulos G., Arvanitis K. G. (2021) Enhancing a flexible robotic spraying platform for distant plant inspection via high-quality thermal imagery data. Computers and Electronics in Agriculture, vol. 190, 106462. Available at: https://doi.org/10.1016/j.compag.2021.106462.
  33. Utility model patent No.: 141056. Technological complex for aerial chemical treatment of plants using sprayer drones. Application No.: u201907592. Application filing date: 08.07.2019 Date from which rights are valid: 25.03.2020. IPC (2006): A01M 7/00, A01M 11/00. Inventor: Hevko Roman Bogdanovich; Dovbush Taras Anatoliyovych; Lyashuk Oleh Leontiyovych; Tkachenko Igor Grigorovich; Khomyk Nadiya Igorovna; Dovbush Anatoliy Dmytrovych; Bortnyk Igor Myronovych. Owner: Ivan Pulyuy Ternopil National Technical University, Ruska St., 56, Ternopil. (In Ukrainian).
  34. Dovbush T. A., Gevko R. B., Khomyk N. I. Method of aerial chemical treatment of plants using drones-sprayers. Modern technologies of the industrial complex-2020: materials of the V int. scient.-practical conf., vol. 5, Kherson, September 10–15, 2019. Kherson: KhNTU, 2019. pp. 40–41. (In Ukrainian).
References:
  1. Hafeez A., Husain M. A., Singh S. P., Chauhan A., Khan M. T., Kumar N., Chauhan A., Soni S. K. (2023) Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information Processing in Agriculture, vol. 10, iss. 2, рр. 192–203. Available at: https://doi.org/10.1016/j.inpa. 2022.02.002.
  2. Canicattì M., Vallone M. (2024) Drones in vegetable crops: A systematic literature review. Smart Agricultural Technology, vol. 7, 100396. Available at: https://doi.org/10.1016/j.atech.2024.100396.
  3. Rejeb A., Abdollahi A., Rejeb K., Treiblmaier H. (2022) Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, vol. 198, 107017. Available at: https://doi.org/10.1016/ j.compag.2022.107017.
  4. Ayamga M., Akaba S., Nyaaba A. (2021) Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, vol. 167, 120677, Available at: https://doi.org/10.1016/j.techfore. 2021.120677.
  5. Guebsi R., Mami S. & Chokmani K. (2024) Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones(11), 686. Available at: https://doi.org/10.3390/ drones8110686.
  6. García-Munguía A., Guerra-Ávila P. L., Islas-Ojeda E., Flores-Sánchez J. L., Vázquez-Martínez O., García-Munguía A. M. & García-Munguía O. (2024) A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones8(11), 674. Available at: https://doi.org/10.3390/drones 8110674.
  7. Ahirwar S., Swarnkar R., Srinivas B., Namwade G. (2019) Application of Drone in Agriculture. International Journal of Current Microbiology and Applied Sciences. 8. 2500–2505. Available at: 10.20546/ijcmas.2019.801.264.
  8. Souvanhnakhoomman S. (2021) Review on Application of Drone in Spraying Pesticides and Fertilizers. International Journal of Engineering Research and Technology, 10 (11). Available at: https://doi.org/10.175 77/IJERTV10IS110034.
  9. Raj M., Harshini N. B., Gupta S., Atiquzzaman M., Rawlley O., Goel L. (2024) Leveraging precision agriculture techniques using UAVs and emerging disruptive technologies. Energy Nexus, vol. 14, 100300. Available at: https://doi.org/10.1016/j.nexus.2024.100300.
  10. Gaadhe S., Dipesh C., Mehta T., Chavda S., Gojiya K.,  Bandhiya R. (2025) A comparative study of drone spraying and conventional spraying for precision agriculture. Plant Archives. 25. 771–778. Available at: 10.51470/PLANTARCHIVES.2025.SP.ICTPAIRS-111.
  11. Shanmugam P. S., Srinivasan T., Baskaran V., Suganthi A., Vinothkumar B., Arulkumar G., Backiyaraj S., Chinnadurai S., Somasundaram A., Sathiah N., Muthukrishnan N., Krishnamoorthy S. V., Prabakar K., Douresamy S., Johnson Edward Thangaraj Y. S., Pazhanivelan S., Ragunath K. P., Kumaraperumal R., Jeyarani S., Kavitha R., Mohankumar A. P. (2024) Comparative analysis of unmanned aerial vehicle and conventional spray systems for the maize fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera; Noctuidae) management. Plant Protect. Sci., 60( 2): 181–192. Doi: 10.17221/96/2023-PPS.
  12. Jeevan N., Surla K., Yerradoddi S., Nunavath S. (2024) Advancements in drone technology for weed management: A comprehensive review. International Journal of Advanced Biochemistry Research. 8. 22–27. Available at: 10.33545/26174693.2024.v8.i9a.2058.
  13. Meesaragandla, Srija & Jagtap, Megha & Khatri, Narendra & Madan, Hakka & Vadduri, Aditya. (2024) Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review. Results in Engineering. 21. 101870. Available at: 10.1016/j.rineng.2024.101870.
  14. Raj M., Harshini N. B., Gupta S., Atiquzzaman M., Rawlley O., Goel L. (2024) Leveraging precision agriculture techniques using UAVs and emerging disruptive technologies. Energy Nexus, vol. 14, 100300. Available at: https://doi.org/10.1016/j.nexus.2024.100300.
  15. Gaadhe S., Dipesh C., Mehta T., Chavda S., Gojiya K.,  Bandhiya R. (2025) A comparative study of drone spraying and conventional spraying for precision agriculture. Plant Archives. 25. 771–778. Available at: 10.51470/PLANTARCHIVES.2025.SP.ICTPAIRS-111.
  16. Shanmugam P. S., Srinivasan T., Baskaran V., Suganthi A., Vinothkumar B., Arulkumar G., Backiyaraj S., Chinnadurai S., Somasundaram A., Sathiah N., Muthukrishnan N., Krishnamoorthy S. V., Prabakar K., Douresamy S., Johnson Edward Thangaraj Y. S., Pazhanivelan S., Ragunath K. P., Kumaraperumal R., Jeyarani S., Kavitha R., Mohankumar A. P. (2024) Comparative analysis of unmanned aerial vehicle and conventional spray systems for the maize fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera; Noctuidae) management. Plant Protect. Sci., 60( 2): 181–192. Doi: 10.17221/96/2023-PPS.
  17. Jeevan N., Surla K., Yerradoddi S., Nunavath S. (2024) Advancements in drone technology for weed management: A comprehensive review. International Journal of Advanced Biochemistry Research. 8. 22–27. Available at: 10.33545/26174693.2024.v8.i9a.2058.
  18. Meesaragandla, Srija & Jagtap, Megha & Khatri, Narendra & Madan, Hakka & Vadduri, Aditya. (2024) Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review. Results in Engineering. 21. 101870. Available at: 10.1016/j.rineng.2024.101870.
  19. Gulak M. A. (2024). Implementation of Drone for Spraying Herbicide and Pesticide. Available at: 10.5281/zenodo.13337525.
  20. Martyniuk V., Khoma V., Matskiv T., Yunko K., Gnatyshyna L., Stoliar O. & Faggio C. (2023) Combined effect of microplastic, salinomycin and heating on Unio tumidus. Environmental toxicology and pharmacology, 98, 104068. Available at: https://doi.org/10.1016/j.etap.2023.104068.
  21. Martyniuk V. V. (2022) Accumulation of microplastics in the bivalve mollusc Unio tumidus under experimental and field exposures. Studia Biologica, 16 (4): 33–44. Available at: https://doi.org/10.30970/ sbi.1604.694.
  22. Musthaq Z., Baran M. F., Demir C., Saeed S., Islam M. & Siddiqui A. (2024). Role of sprayers drone in sustainable agriculture. Available at: 10.5281/zenodo.10841204.
  23. Shahrooz M., Talaeizadeh A. and Alasty A. (2020) Agricultural Spraying Drones: Advantages and Disadvantages, 2020 Virtual Symposium in Plant Omics Sciences (OMICAS), Bogotá, Colombia, pp. 1–5. Doi: 10.1109/OMICAS52284.2020.9535527.
  24. Castaldo, João. (2023). Revolutionizing agriculture from the skies: exploring the potential of spraying drones in precision farming. Cadernos de Ciência & Tecnologia, 40, 2023. 10.35977/0104-1096.cct2023.v40.27284.
  25. Pidgurskyi M., Stashkiv M., Pidgurskyi I., Oleksyuk V., Pidluzhnyi O., Bykiv D., Borys I., Bulaienko R., Stashkiv V., Mushak A. (2024) Methodology of experimental and analytical research of technical systems. Scientific Journal of TNTU (Tern.), vol 116, no 4, pp. 50–58.
  26. Menon B. K., Deshpande T., Pal A., Kothandaraman S. (2025) Critical regions identification and coverage using optimal drone flight path planning for precision agriculture. Results in Engineering, vol. 25, 104081. Available at: https://doi.org/10.1016/j.rineng.2025.104081.
  27. Andrii Babii, Taras Dovbush, Nadiia Khomuk, Anatolii Dovbush, Anna Tson, Vasyl Oleksyuk (2022) Mathematical model of a loaded supporting frame of a solid fertilizers distributor. Procedia Structural Integrity, no. 36, рр. 203–210. Science Direct. Available at: https://doi.org/10.1016/j.prostr.2022.01.025.
  28. Babii A., Levytskyi B., Dovbush T., Babii M., Khomuk N., Dovbush A., Valiashek V. (2024) Mathematical model of sprayer tank loading. Procedia Structural Integrity, no. 59, рр. 609–616. Available at: https://doi.org/10.1016/j.prostr.2024.04.086.
  29. Hevko R., Stashkiv M., Lyashuk O., Vovk Y., Oleksyuk V., Tson O., Bortnyk I. (2021) Investigation of internal efforts in the components of the crop sprayer boom section. Journal of Achievements in Materials and Manufacturing Engineering, vol. 105, iss. 1, 33–41. Doi: 10.5604/01.3001.0014.8743.
  30. Andreykiv О., Babii A., Dolinska I., Yadzhak N., Babii M. Residual lifetime prediction of field sprayer booms under the action of manoeuvre loading and corrosive environment. Procedia Structural Integrity, vol. 36, pp.  36–42. Available at: https://doi.org/10.1016/j.prostr.2021.12.080.
  31. Trappey Amy J. C., Lin Ging-Bin, Chen Hong-Kai, Chen Ming-Chi (2023) A comprehensive analysis of global patent landscape for recent R&D in agricultural drone technologies. World Patent Information, vol. 74, 102216. Available at: https://doi.org/10.1016/j.wpi.2023.102216.
  32. Loukatos D., Templalexis C., Lentzou D., Xanthopoulos G., Arvanitis K. G. (2021) Enhancing a flexible robotic spraying platform for distant plant inspection via high-quality thermal imagery data. Computers and Electronics in Agriculture, vol. 190, 106462. Available at: https://doi.org/10.1016/j.compag.2021.106462.
  33. Utility model patent No.: 141056. Technological complex for aerial chemical treatment of plants using sprayer drones. Application No.: u201907592. Application filing date: 08.07.2019 Date from which rights are valid: 25.03.2020. IPC (2006): A01M 7/00, A01M 11/00. Inventor: Hevko Roman Bogdanovich; Dovbush Taras Anatoliyovych; Lyashuk Oleh Leontiyovych; Tkachenko Igor Grigorovich; Khomyk Nadiya Igorovna; Dovbush Anatoliy Dmytrovych; Bortnyk Igor Myronovych. Owner: Ivan Pulyuy Ternopil National Technical University, Ruska St., 56, Ternopil. (In Ukrainian).
  34. Dovbush T. A., Gevko R. B., Khomyk N. I. Method of aerial chemical treatment of plants using drones-sprayers. Modern technologies of the industrial complex-2020: materials of the V int. scient.-practical conf., vol. 5, Kherson, September 10–15, 2019. Kherson: KhNTU, 2019. pp. 40–41. (In Ukrainian).
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.