logo logo


Methods and means of increasing the reliability of computerized modular uninterruptible power supply system

НазваMethods and means of increasing the reliability of computerized modular uninterruptible power supply system
Назва англійськоюMethods and means of increasing the reliability of computerized modular uninterruptible power supply system
АвториAndriy Palamar (https://orcid.org/0000-0003-2162-9011)
ПринадлежністьTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
Бібліографічний описMethods and means of increasing the reliability of computerized modular uninterruptible power supply system / Andriy Palamar // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 99. — No 3. — P. 133–141.
Bibliographic description:Palamar A. (2020) Methods and means of increasing the reliability of computerized modular uninterruptible power supply system. Scientific Journal of TNTU (Tern.), vol 99, no 3, pp. 133–141.
DOI: https://doi.org/10.33108/visnyk_tntu2020.03.133
УДК

004.94:681.518:621.311

Ключові слова

reliability, control system, uninterruptible power supply, simulation.

The problem of development and implementation of a simple and effective method of the rectifiers operation control for the modular uninterruptible DC power supply unit in order to increase its reliability is considered in this paper. The main idea of the method is to control the process of cyclic shifting of the switched-on power modules of the uninterruptible power supply by series switching into operation of each subsequent module from their unloaded reserve and switching out the previous one. The paper presents the control system structure where in addition to the central control module, it is proposed to add the control unit for power modules, which is responsible for implementing the process of their switching on and monitors their condition. In order to investigate the effectiveness of the proposed method, computer simulation model describing the power modules control logic is developed. The Simulink visual modeling environment and the mathematical tools of the Stateflow library component using state and transition diagrams are used in order to develop the simulation model. The developed simulation model is tested and the simulation results are given in the form of time diagrams of state change. The іmplementation of the developed method, due to the uniform reduction of the period during which the power modules of the uninterruptible power supply are on the switched-on loaded state, makes it possible to increase their operating time to failure, which in turn increases its reliability without deteriorating energy efficiency. The simulation results demonstrate the efficiency of the developed algorithm in various system operation modes. Based on the proposed method, hardware and software which is implemented as a part of intelligent computerized control system for uninterruptible DC power supply is created.

ISSN:2522-4433
Перелік літератури
  1. Andriychuk V., Filyuk Y. Autonomous power supply system for outdoor illumination of residential areas in the territory of Ukraine. Scientific Journal of TNTU. 2018. Vol. 89. No. 1. P. 113–121.
  2. Shrestha B. R., Hansen T. M., Tonkoski R. Reliability analysis of 380V DC distribution in data centers. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). 2016. P. 1–5.
  3. Talapko D. Telecom datacenter power infrastructure availability comparison of DC and AC UPS. International Telecommunications Energy Conference (INTELEC). 2012. P. 1–5.
  4. Saro L., Zanettin C., Božič V. Reliability analysis and calculations for different power system architectures based on modular UPS. IEEE International Telecommunications Energy Conference (INTELEC). 2018. P. 1–8.
  5. Saro L., Zanettin C., Božič V. Reliability analysis and calculation for the most common modular UPS system architectures. IEEE International Telecommunications Energy Conference (INTELEC). 2017. P. 91–98.
  6. Xiaofei Z., Zhen W., Zhou S. How to ensure the modular UPS with high reliability. IEEE International Telecommunications Energy Conference (INTELEC). 2015. No. 1. P. 3–6.
  7. Shrestha B. R., Tamrakar U., Hansen T. M., Bhattarai B. P., James S., Tonkoski R. Efficiency and reliability analyses of AC and 380 v DC distribution in data centers. Amer. Power Convers., Schnieder Electr., White Paper. 2018. Vol. 127. P. 63305–63315.
  8. Artyushenko V. M., Abbasova T. S. Osobennosti rezervirovaniya istochnikov besperebojnogo pitaniya kompyuternogo i telekommunikacionnogo oborudovaniya. Elektrotexnicheskie i informacionnye kompleksy` i sistemy. 2007. Vol. 3. No. 3. P. 20–23. [In Russian].
  9. Rogulina L. G. Avtomatizaciya proektirovaniya sistem elektropitaniya dlya predpriyatij svyazi. Vestnik Tambovskogo gosudarstvennogo texnicheskogo universiteta. 2011. Vol. 4. No. 17. P. 927–931. [In Russian].
  10. Volochii B. Y., Ozirkovskyi L. D., Chopei R. S., Mashchak A. V., Shkiliuk O. P. Otsinka nadiinosti prohramno-aparatnykh system za dopomohoiu modeli yikh povedinky. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. 2014. No. 796. P. 222–231. [In Ukrainian].
  11. Volochii B. Y., Kuznietsov D. S. Model dlia nadiinisnoho proektuvannia dzherel bezperebiinoho elektrozhyvlennia radioelektronnykh informatsiinykh system tsilodobovoi dovhotryvaloi ekspluatatsiiRadioelektronika i informatika. 2012. No. 2. P. 36–42. [In Ukrainian].
  12. Addabbo T., Fort A., Mugnaini M., Vignoli V. Distributed UPS control systems reliability analysis. Measurement. 2017. Vol. 110. P. 275–283.
  13. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive regulation function. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 129–136.
  14. Palamar A., Karpinskyy M., Vodovozov V. Design and implementation of a digital control and monitoring system for an AC/DC UPS. 7th International Conference-Workshop “Compatibility and Power Electronics” CPE 2011. Tallinn, Estonia. 2011. P. 173–177.
  15. Palamar A., Karpinskyy M. Control of an Uninterruptible Power Supply in a DC Microgrid System. 10th International Symposium Symposium “Topical Problems in the Field of Electrical and Power Engineering” and “Doctoral School of Energy and Geotechnology II”. Pärnu, Estonia. 2011. P. 80–84.
References:
  1. Andriychuk V., Filyuk Y. Autonomous power supply system for outdoor illumination of residential areas in the territory of Ukraine. Scientific Journal of TNTU. 2018. Vol. 89. No. 1. P. 113–121.
  2. Shrestha B. R., Hansen T. M., Tonkoski R. Reliability analysis of 380V DC distribution in data centers. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). 2016. P. 1–5.
  3. Talapko D. Telecom datacenter power infrastructure availability comparison of DC and AC UPS. International Telecommunications Energy Conference (INTELEC). 2012. P. 1–5.
  4. Saro L., Zanettin C., Božič V. Reliability analysis and calculations for different power system architectures based on modular UPS. IEEE International Telecommunications Energy Conference (INTELEC). 2018. P. 1–8.
  5. Saro L., Zanettin C., Božič V. Reliability analysis and calculation for the most common modular UPS system architectures. IEEE International Telecommunications Energy Conference (INTELEC). 2017. P. 91–98.
  6. Xiaofei Z., Zhen W., Zhou S. How to ensure the modular UPS with high reliability. IEEE International Telecommunications Energy Conference (INTELEC). 2015. No. 1. P. 3–6.
  7. Shrestha B. R., Tamrakar U., Hansen T. M., Bhattarai B. P., James S., Tonkoski R. Efficiency and reliability analyses of AC and 380 v DC distribution in data centers. Amer. Power Convers., Schnieder Electr., White Paper. 2018. Vol. 127. P. 63305–63315.
  8. Artyushenko V. M., Abbasova T. S. Osobennosti rezervirovaniya istochnikov besperebojnogo pitaniya kompyuternogo i telekommunikacionnogo oborudovaniya. Elektrotexnicheskie i informacionnye kompleksy` i sistemy. 2007. Vol. 3. No. 3. P. 20–23. [In Russian].
  9. Rogulina L. G. Avtomatizaciya proektirovaniya sistem elektropitaniya dlya predpriyatij svyazi. Vestnik Tambovskogo gosudarstvennogo texnicheskogo universiteta. 2011. Vol. 4. No. 17. P. 927–931. [In Russian].
  10. Volochii B. Y., Ozirkovskyi L. D., Chopei R. S., Mashchak A. V., Shkiliuk O. P. Otsinka nadiinosti prohramno-aparatnykh system za dopomohoiu modeli yikh povedinky. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. 2014. No. 796. P. 222–231. [In Ukrainian].
  11. Volochii B. Y., Kuznietsov D. S. Model dlia nadiinisnoho proektuvannia dzherel bezperebiinoho elektrozhyvlennia radioelektronnykh informatsiinykh system tsilodobovoi dovhotryvaloi ekspluatatsiiRadioelektronika i informatika. 2012. No. 2. P. 36–42. [In Ukrainian].
  12. Addabbo T., Fort A., Mugnaini M., Vignoli V. Distributed UPS control systems reliability analysis. Measurement. 2017. Vol. 110. P. 275–283.
  13. Palamar A. Control system simulation by modular uninterruptible power supply unit with adaptive regulation function. Scientific Journal of TNTU. 2020. Vol. 98. No. 2. P. 129–136.
  14. Palamar A., Karpinskyy M., Vodovozov V. Design and implementation of a digital control and monitoring system for an AC/DC UPS. 7th International Conference-Workshop “Compatibility and Power Electronics” CPE 2011. Tallinn, Estonia. 2011. P. 173–177.
  15. Palamar A., Karpinskyy M. Control of an Uninterruptible Power Supply in a DC Microgrid System. 10th International Symposium Symposium “Topical Problems in the Field of Electrical and Power Engineering” and “Doctoral School of Energy and Geotechnology II”. Pärnu, Estonia. 2011. P. 80–84.
Завантажити

Всі права захищено © 2019. Тернопільський національний технічний університет імені Івана Пулюя.